初中数学几何模型之圆弧轨迹型瓜豆原理专题

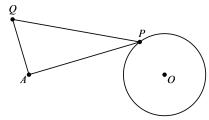
一. 模型介绍

模型 构造

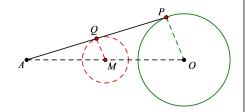
运动轨迹为圆弧型的瓜豆原理

(1) 如图,P 是圆 O 上一个动点,A 为定点,连接 AP,Q 为 AP 中点。 Q 点轨迹是? (2) 如图, $\triangle A$ $= k \cdot AQ$,当

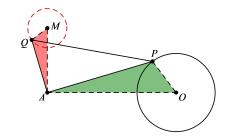
(2) 如图, $\triangle APQ$ 是直角三角形, $\angle PAQ = 90^{\circ}$ 且 $AP = k \cdot AQ$,当 P 在圆 O 运动时,Q 点轨迹是?



解决 方法



如图,连接 AO,取 AO 中点 M,任意时刻,均有 $\triangle AMQ \sim \triangle AOP$, $\frac{OM}{OP} = \frac{AQ}{AP}$ = $\frac{1}{2}$,则动点 Q 是以 M 为圆心, MQ 为半径的圆。

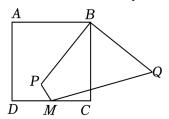


如图,连结 AO,作 $AM \perp AO$, AO:AM = k:1;任意时 刻均有 $\triangle APO \sim \triangle AQM$,且相似比为 k。则动点 Q 是以 M 为圆心,MQ 为半径的圆。

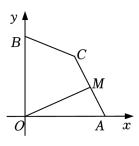
【最值原理】动点的轨迹为定圆时,可利用:"一定点与圆上的动点距离最大值为定点到圆心的距离与半径之和,最小值为定点到圆心的距离与半径之差"的性质求解。

二. 例题讲解

题目 1 如图,M是正方形 ABCD 边 CD 的中点,P是正方形内一点,连接 BP,线段 BP 以 B 为中心逆时针 旋转 90° 得到线段 BQ,连接 MQ. 若 AB=4, MP=1,则 MQ 的最小值为 .



题目 2 如图,点 A、B 的坐标分别为 $A(\sqrt{2},0)$ 、 $B(0,\sqrt{2})$,点 C 为坐标平面内一点,BC=1,点 M 为线段 AC 的中点,连接 OM,则 OM 最长为 ()



A. $\frac{3}{2}$

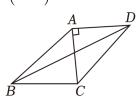
B. $\frac{5}{2}$

C. 2

D. 3

三. 巩固练习

题目 1 如图,在 $\triangle ABC$ 中, $\angle B=45^\circ$, AC=2,以 AC为边作等腰直角 $\triangle ACD$,连 BD,则 BD 的最大值是



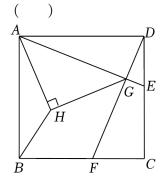
A. $\sqrt{10} - \sqrt{2}$

B. $\sqrt{10} + \sqrt{3}$

C. $2\sqrt{2}$

D. $\sqrt{10} + \sqrt{2}$

题目 2 正方形 ABCD 中,AB=4,点 E、F 分别是 CD、BC 边上的动点,且始终满足 DE=CF,DF、AE 相交于点 G. 以 AG 为斜边在 AG 下方作等腰直角 $\triangle AHG$ 使得 $\angle AHG=90^\circ$,连接 BH. 则 BH 的最小值为



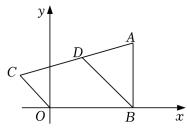
A. $2\sqrt{5} - 2$

B. $2\sqrt{5} + 2$

C. $\sqrt{10} - \sqrt{2}$

D. $\sqrt{10} + \sqrt{2}$

题目 3 如图,点 A 的坐标为 (4,3), $AB \perp x$ 轴于点 B,点 C 为坐标平面内一点, OC = 2,点 D 为线段 AC 的中点,连接 BD,则 BD 的最大值为 ()



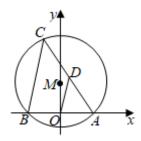
A. 3

B. $\frac{7}{2}$

C. $\frac{3\sqrt{5}}{2}$

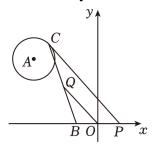
D. $2\sqrt{5}$

题目 4 如图,点 M坐标为 (0,2),点 A 坐标为 (2,0),以点 M为圆心, MA 为半径作 \odot M,与 x 轴的另一个交点为 B,点 C 是 \odot M 上的一个动点,连接 BC,AC,点 D 是 AC的中点,连接 OD,当线段 OD 取得最大值时,点 D 的坐标为 (



- A. $(0, 1+\sqrt{2})$
- B. $(1, 1+\sqrt{2})$ C. (2, 2)
- D. (2, 4)

题目 5 如图,点 A 的坐标为 (-3,3),点 P 的坐标为 (1,0),点 B 的坐标为 (-1,0), ⊙ A 的半径为 1, C 为圆 上一动点,Q为BC的中点,连接PC,OQ,则OQ长的最大值为()



A. 5

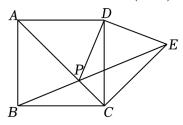
- B. 2.5
- C. 6

D. 3

题目 6 如图,在正方形 ABCD中, AB=2,点 P是对角线 AC上一动点 (不与 A, C重合),连接 PD, PB. 过点D作 $DE \perp DP$,且DE = DP,连接PE,CE.

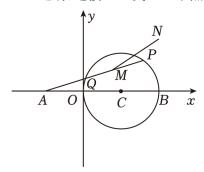
- ① $\angle APB = \angle CDE$;② PE 的长度最小值为 $\sqrt{2}$;
- $3PC^2+CE^2=2DE^2$; $4CE+CP=2\sqrt{2}$.

以上判断,正确的有(

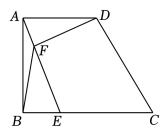


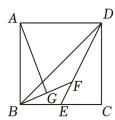
- A. 1个
- B. 2个
- C. 3个
- D. 4个

题目 7 如图,点 A, C, N的坐标分别为 (-2,0), (2,0), (4,3),以点 C为圆心、2为半径画 $\odot C$,点 P在 \odot O上运动,连接 AP,交 \odot C于点 Q,点 M为线段 QP 的中点,连接 MN,则线段 MN的最小值为 .

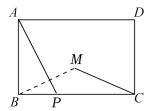


题目 8 如图,在四边形 ABCD中, $\angle ABC = \angle BAD = 90^{\circ}$, AB = 5, AD = 4, AD < BC, 点 E 在线段 BC 上 运动,点 F在线段 AE上, $\angle ADF = \angle BAE$,则线段 BF的最小值为 $\sqrt{29}$ - . .

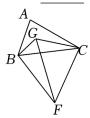




题目 10 如图,在矩形 ABCD中,已知 AB=3, BC=4,点 P 是 BC 边上一动点 (点 P 不与点 B, C 重合),连接 AP,作点 B 关于直线 AP 的对称点 M,连接 CM,则 CM 的最小值为 .



题目 11 如图,点 G是 $\triangle ABC$ 内的一点,且 $\angle BGC=120^\circ$, $\triangle BCF$ 是等边三角形. 若 BC=3,则 FG 的最大值为 $\sqrt{3}$ __.



题目 12 在 $\triangle ABC$ 中, $\angle ABC$ = 90°,AB = 2,BC = 3. 点 D 为平面上一个动点, $\angle ADB$ = 45°,则线段 CD 长度的最小值为 $_\sqrt{5}-\sqrt{2}$.

题目 13 如图,点 P(3,4), \odot P 半径为 2, A(2.8,0), B(5.6,0),点 M E \odot P 上的动点,点 C 是 MB 的中点,则 AC 的最小值是(

A. 1.4

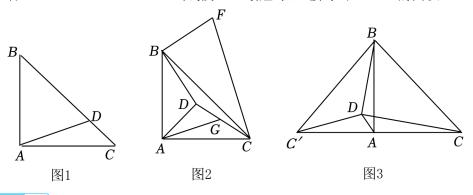
B. $\frac{5}{2}$

C. $\frac{3}{2}$

D. 2.6

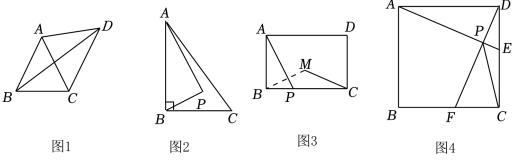
题目 14 如图,已知 $\triangle ABC$ 中, AB = AC, $\angle BAC = 90^{\circ}$,点 D是 $\triangle ABC$ 所在平面内一点,连接 AD, BD, CD.

- (1) 如图 1,点 D在 BC上, $AD = \sqrt{10}$,且 $\tan \angle CAD = \frac{1}{3}$,求 $\triangle ABD$ 的面积;
- (2) 如图 2,点 D 为 $\triangle ABC$ 内部一动点,将线段 BD 绕点 B 逆时针旋转 90° 得到线段 BF,连接 CF,点 G 是 线段 CD 的中点,连接 AG,猜想线段 AG,CF 之间存在的位置关系和数量关系,并证明你的猜想;
- (3) 如图 3,点 C关于直线 AB 的对称点为点 C'. 连接 AC',BC',点 D 为 $\triangle ABC'$ 内部一动点,连接 C'D. 若 $\triangle BDC = 90^\circ$,且 BC = 8,当线段 C'D 最短时,直接写出 $\triangle ACD$ 的面积.



题目 15 阅读理解:(1)【学习心得】

学习完"圆"这一章内容后,有一些几何问题,如果添加辅助圆,可以使问题变得容易.我们把这个过程称为"化隐圆为显圆".这类题目主要是两种类型.



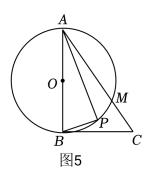
①类型一,"定点+定长":如图 1,在 $\triangle ABC$ 中,AB = AC, $\angle BAC = 52$ °,D 是 $\triangle ABC$ 外一点,且 AD = AC,求 $\angle BDC$ 的度数.

解:由于 AB = AC = AD,根据圆的定义可知,点 $B \setminus C \setminus D$ 一定在以点 A(定点)为圆心,AB(定长)为半径的 $\bigcirc A \perp$,则 $\angle BAC$ 是 BC 所对的圆心角,而 $\angle BDC$ 是 BC 所对的圆周角,从而可容易得到 $\angle BDC$ =

②类型二,"定角+定弦":如图 2, $Rt\triangle ABC$ 中, $AB\perp BC$,AB=12,BC=8,P 是 $\triangle ABC$ 内部的一个动点,且满足 $\angle PAB=\angle PBC$,求线段 CP 长的最小值.

解: :: $\angle ABC = 90^{\circ}$,

- $\therefore \angle ABP + \angle PBC = 90^{\circ}.$
- $\therefore \angle PAB = \angle PBC$,
- $\therefore \angle BAP + \angle ABP = 90^{\circ}.$
- ∴ ∠APB=90°. (定角)
- ∴点P在以AB(定弦)为直径的O上.
- 又::点P在 $\triangle ABC$ 内部,
- \therefore 点 P 在弧 BM 上 (不包括点 B、点 M), (如图 5) 请完成后面的过程.



(2)【问题解决】

如图 3,在矩形 ABCD 中,已知 AB=3, BC=4,点 P 是 BC 边上一动点 (点 P 不与 B, C 重合),连接 AP,作点 B 关于直线 AP 的对称点 M,则线段 MC 的最小值为 ______.

(3)【问题拓展】

如图 4,在正方形 ABCD 中,AD=6,动点 E,F 分别在边 DC,CB 上移动,且满足 DE=CF. 连接 AE 和 DF,交于点 P. 点 E 从点 D 开始运动到点 C 时,点 P 也随之运动,点 P 的运动路径长为 .

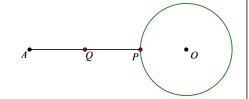
初中数学几何模型之圆弧轨迹型瓜豆原理专题

一. 模型介绍

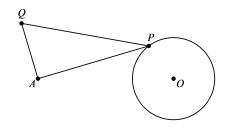
运动轨迹为圆弧型的瓜豆原理

(1) 如图, P 是圆 O 上一个动点, A 为定点, 连接 AP, Q 为 AP 中点. Q 点轨迹是?

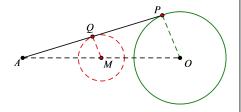
模型 构造



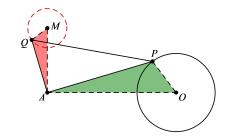
(2) 如图, $\triangle APQ$ 是直角三角形, $\angle PAQ = 90^{\circ}$ 且 $AP = k \cdot AQ$, 当 P 在圆 O 运动时, Q 点轨迹是?



解决 方法



如图,连接 AO,取 AO 中点 M,任意时刻,均有 $\triangle AMQ \sim \triangle AOP$, $\frac{OM}{OP} = \frac{AQ}{AP}$ = $\frac{1}{2}$,则动点 Q 是以 M 为圆心,MQ 为半径的圆。

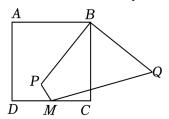


如图,连结 AO,作 $AM \perp AO$, AO:AM = k:1;任意时 刻均有 $\triangle APO \sim \triangle AQM$,且相似比为 k。则动点 Q 是以 M 为圆心,MQ 为半径的圆。

【最值原理】动点的轨迹为定圆时,可利用:"一定点与圆上的动点距离最大值为定点到圆心的距离与半径之和,最小值为定点到圆心的距离与半径之差"的性质求解。

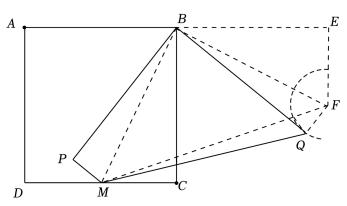
二. 例题讲解

题目 1 如图,M是正方形 ABCD 边 CD 的中点,P是正方形内一点,连接 BP,线段 BP 以 B 为中心逆时针 旋转 90° 得到线段 BQ,连接 MQ. 若 AB=4, MP=1,则 MQ 的最小值为 .



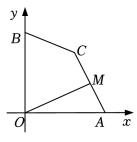
答案: $2\sqrt{10}-1$.

【分析有据】连接 BM,将 $\triangle BCM$ 绕 B 逆时针旋转 90° 得 $\triangle BEF$,连接 MF, QF,证明 $\triangle BPM \cong \triangle BQF$ (SAS),得 MP = QF = 1,故 Q 的运动轨迹是以 F 为圆心,1 为半径的弧,求出 $BM = \sqrt{BC^2 + CM^2} = 2\sqrt{5}$,可得 $MF = \sqrt{2}BM = 2\sqrt{10}$,由 $MQ \geqslant MF - QF$,知 $MQ \geqslant 2\sqrt{10} - 1$,从而可得 MQ 的最小值为 $2\sqrt{10} - 1$. 【解答有法】解:连接 BM,将 $\triangle BCM$ 绕 B 逆时针旋转 90° 得 $\triangle BEF$,连接 MF, QF ,如图:



- $\therefore \angle CBE = 90^{\circ}, \angle ABC = 90^{\circ}, \therefore \angle ABC + \angle CBE = 180^{\circ},$
- $\therefore A, B, E$ 共线, $\because \angle PBM = \angle PBQ \angle MBQ = 90^{\circ} \angle MBQ = \angle FBQ$,
- 由旋转性质得 PB = QB, MB = FB, $\therefore \triangle BPM \cong \triangle BQF(SAS)$, $\therefore MP = QF = 1$,
- $\therefore Q$ 的运动轨迹是以F为圆心,1为半径的弧, $\therefore BC = AB = 4$, $CM = \frac{1}{2}CD = 2$,
- $\therefore BM = \sqrt{BC^2 + CM^2} = 2\sqrt{5}, \because \angle MBF = 90^\circ, BM = BF, \therefore MF = \sqrt{2}BM = 2\sqrt{10},$
- $:MQ \ge MF QF$, $:MQ \ge 2\sqrt{10} 1$, :MQ 的最小值为 $2\sqrt{10} 1$. 故答案为: $2\sqrt{10} 1$.

题目 2 如图,点 A、B 的坐标分别为 $A(\sqrt{2},0)$ 、 $B(0,\sqrt{2})$,点 C 为坐标平面内一点,BC=1,点 M 为线段 AC 的中点,连接 OM,则 OM 最长为 ()



A. $\frac{3}{2}$

B. $\frac{5}{2}$

C. 2

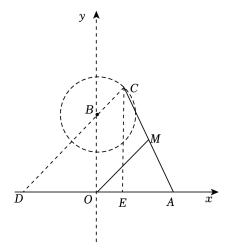
D. 3

答案: A.

【分析有据】根据同圆的半径相等可知: 点C在半径为1的 \odot B上,根据三角形的中位线定理可知,C在 BD与圆B的交点时,OM最小,在DB的延长线上时,OM最大,根据平行线分线段成比例定理求得C的坐标,进而即可求得M的坐标。

【解答有法】解:如图,:点C为坐标平面内一点,BC=1,

:: C在 $\odot B$ 上, 且半径为 1, 取 $OD = OA = \sqrt{2}$, 连接 CD,



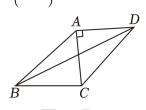
 $:: AM = CM, OD = OA, :: OM \in \Delta ACD$ 的中位线, :: OM = CD,

当 OM 最大时,即 CD 最大,而 D, B, C 三点共线时,当 C 在 DB 的延长线上时, OM 最大,

 $:: OB = OD = \sqrt{2}, \angle BOD = 90^{\circ}, :: BD = 2, :: CD = 2 + 1 = 3, :: OM = \frac{3}{2}.$ 故选: A.

三. 巩固练习

题目 1 如图,在 $\triangle ABC$ 中, $\angle B=45^\circ$,AC=2,以AC为边作等腰直角 $\triangle ACD$,连BD,则BD的最大值是



A. $\sqrt{10} - \sqrt{2}$

B. $\sqrt{10} + \sqrt{3}$

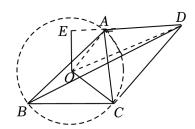
C. $2\sqrt{2}$

D. $\sqrt{10} + \sqrt{2}$

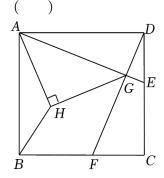
【分析有据】如图所示,以AC为斜边,作等腰直角 $\triangle AOC$,过点O作 $OE \perp AD$ 交DA延长线于E,连接OD,则 $\angle AOC = 90°, <math>OC = OA = \sqrt{2}$, $\angle OAC = 45°$,先证明点B在以O为圆心, $\sqrt{2}$ 为半径的圆周上运动(AB右侧),故当点O在线段BD上时,BD最大,再求出OE,DE的长,进而利用勾股定理求出OD的长即可得到答案.

【解答有法】解:如图所示,以AC为斜边,作等腰直角 $\triangle AOC$,过点O作 $OE \perp AD$ 交DA延长线于E,连接OD, \therefore $\angle AOC = 90^{\circ}$, $OC = OA = \frac{\sqrt{2}}{2}AC = \sqrt{2}$, $\angle OAC = 45^{\circ}$,

- $:: \angle ABC = 45^{\circ}, :: 点 B 在以 O 为圆心, √2 为半径的圆周上运动 (AB 右侧),$
- :. 当点 O 在线段 BD 上时, BD 最大,
- $: \triangle ACD$ 是以AC为边的等腰直角三角形,
- $\therefore \angle CAD = 90^{\circ}, AD = AC = 2, \therefore \angle OAE = 45^{\circ},$
- $∴ \triangle AOE$ 是等腰直角三角形,
- $\therefore AE = OE = \frac{\sqrt{2}}{2}OA = 1, \therefore DE = AE + AD = 3,$
- 在 $Rt\triangle DOE$ 中, 由 勾股定理得 $OD = \sqrt{OE^2 + DE^2} = \sqrt{10}$,
- $\therefore BD$ 的最大值 = $DO + BO = \sqrt{10} + \sqrt{2}$.故选: D.



题目 2 正方形 ABCD中,AB=4,点 E、F分别是 CD、BC边上的动点,且始终满足 DE=CF,DF、AE相 交于点 G. 以 AG为斜边在 AG下方作等腰直角 $\triangle AHG$ 使得 $\angle AHG=90^\circ$,连接 BH. 则 BH的最小值为



A. $2\sqrt{5} - 2$

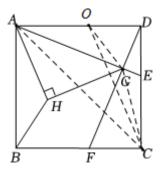
B.
$$2\sqrt{5} + 2$$

C.
$$\sqrt{10} - \sqrt{2}$$

D.
$$\sqrt{10} + \sqrt{2}$$

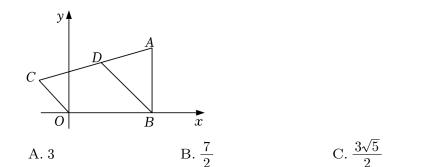
【分析有据】连接 AC,取 AD 的中点 O,连接 OG, CO,利用 $\triangle BAH \sim \triangle CAG$,得 $CG = \sqrt{2}BH$,再证明 $\triangle ADE \cong \triangle DCF(SAS)$,得 $\angle DAE = \angle CDF$,则 $\angle AGD = \angle ADE = 90^{\circ}$,可知当点 $O \times G \times C$ 三点共线时, CG 最小,从而解决问题.

【解答有法】解:连接AC,取AD的中点O,连接OG,CO,



- ∴ $\triangle AHG$ 和 $\triangle ABC$ 是等腰直角三角形,
- $\therefore \frac{AC}{AB} = \frac{AG}{AH} = \sqrt{2}, \ \angle BAC = \angle HAG,$
- $\therefore \angle BAH = \angle CAG, \therefore \triangle BAH \sim \triangle CAG,$
- ∴ $CG = \sqrt{2}BH$, ∵ 四边形 ABCD 是正方形,
- $\therefore AD = CD, \angle ADE = \angle DCF, \because DE = CF,$
- $\therefore \triangle ADE \cong \triangle DCF(SAS), \therefore \angle DAE = \angle CDF,$
- $\therefore \angle AGD = \angle ADE = 90^{\circ}, \therefore$ 当点 $O \setminus G \setminus C$ 三点共线时, CG 最小,
- $\therefore CG$ 的最小值为 $OC OG = 2\sqrt{5} 2$,
- $\therefore BH$ 的最小值为 $\frac{2\sqrt{5}-2}{\sqrt{2}} = \sqrt{10} \sqrt{2}$,故选: C.

题目 3 如图,点 A 的坐标为 (4,3), $AB \perp x$ 轴于点 B,点 C 为坐标平面内一点, OC = 2,点 D 为线段 AC 的中点,连接 BD,则 BD 的最大值为 ()

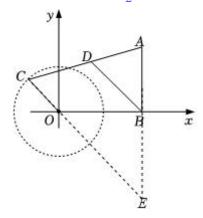


【分析有据】作点A关于x轴的对称点E,根据中位线的性质得到 $BD = \frac{1}{2}EC$,求出CE的最大值即可.

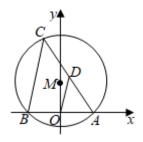
【解答有法】解:如图,作点A关于x轴的对称点E(4,-3),

则点B是AE的中点,又:点D是AC的中点,

- $\therefore BD$ 是 $\triangle AEC$ 的中位线, $\therefore BD = \frac{1}{2}EC$, \therefore 当 EC 最大时, BD 最大,
- :: 点 C为坐标平面内一点,且 OC=2,
- ∴点C在以O为圆心,2为半径的 \odot O上运动,
- :. 当 EC 经过圆心 O 时, EC 最大. :: OB=4, BE=3, :: OE=5, :: CE 的最大值为 5+2=7,
- $\therefore BD$ 的最大值 = $\frac{7}{2}$. 故选: B.



题目 4 如图,点 M坐标为 (0,2),点 A 坐标为 (2,0),以点 M为圆心, MA 为半径作 \odot M,与 x 轴的另一个交点为 B,点 C 是 \odot M上的一个动点,连接 BC,AC,点 D 是 AC的中点,连接 OD,当线段 OD 取得最大值时,点 D 的坐标为 ()



- A. $(0, 1+\sqrt{2})$
- B. $(1, 1+\sqrt{2})$
- C.(2,2)
- D.(2,4)

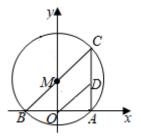
D. $2\sqrt{5}$

【分析有据】根据垂径定理得到 OA = OB,然后根据三角形中位线定理得到 OD //BC, $OD = \frac{1}{2}BC$,即当 BC取得最大值时,线段 OD取得最大值,根据圆周角定理得到 $CA \perp x$ 轴,进而求得 $\triangle OAD$ 是等腰直角三角形,即可得到 AD = OA = 2,得到 D 的坐标为 (2,2).

【解答有法】解: $:OM \perp AB$, :OA = OB, :AD = CD,

 $:: OD // BC, OD = \frac{1}{2}BC, :: 当 BC$ 取得最大值时,线段 OD 取得最大值,如图,

- :BC 为直径, $:\angle CAB = 90^{\circ}$, $:CA \perp x$ 轴, :OB = OA = OM,
- $\therefore \angle ABC = 45^{\circ}, \because OD // BC, \therefore \angle AOD = 45^{\circ},$
- ∴ △AOD 是等腰直角三角形,
- $\therefore AD = OA = 2$, $\therefore D$ 的坐标为 (2, 2), 故选: C.



题目 5 如图,点 A 的坐标为 (-3,3),点 P 的坐标为 (1,0),点 B 的坐标为 (-1,0), \odot A 的半径为 1, C 为圆上一动点,Q 为 BC 的中点,连接 PC,OQ,则 OQ 长的最大值为 ()



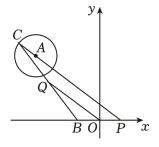
A. 5

B. 2.5

【分析有据】由点 P、点 B 的坐标得 O 是 BP 的中点,则 OQ 是 $\triangle CBP$ 的中位线, $OQ = \frac{1}{2}PC$,当 PC 的长最大时,OQ 的长最大,根据点与圆的位置关系可得 PC 长的最大值为 AP+1,求出 $AP = \sqrt{(1+3)^2+3^2}=5$,即可求解.

【解答有法】解: ∵点P的坐标为(1,0),点B的坐标为(-1,0),

- $:: O \neq BP$ 的中点, $:: Q \rightarrow BC$ 的中点,
- ∴OQ 是 $\triangle CBP$ 的中位线,
- $\therefore OQ = \frac{1}{2}PC,$
- :: 当 PC的长最大时, OQ的长最大, 如图,



- :: $\triangle A$ 的坐标为 (-3,3), $\triangle P$ 的坐标为 (1,0),
- $\therefore AP = \sqrt{(1+3)^2+3^2} = 5$
- $\therefore PC$ 长的最大值为AP+1=6,
- $\therefore OQ$ 长的最大值为 $OQ = \frac{1}{2}PC = 3$,

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问: https://d.book118.com/06712203503
2006124