绝密★启用前

【新结构】江苏省南通市 2024 届新高考适应性调研试题

注意事项:

1	<u> </u>	老生久心焰白己的肚夕	准考证号填写在答题卡上。
Τ	. 合作用,		11年9月,9場刊任育處下上。

- 2. 回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干 净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上,写在试卷上无效。
- 3. 考试结束后,本试卷和答题卡一并交回。

一、单选题:本题共8小题,每小题5分,共40分。在每小题给出的选项中,只有一项是符合题目要求
--

一、单选题:本题共8/	小题,每小题 5 分,共	↓40 分。在每小题给战	出的选项中,只有一项是符合题目要求的						
1. 数据 68,70,80,88,89,90,96,98 的第 15 百分位数为()									
A. 69	B. 70	C. 75	D. 96						
2. 已知双曲线 $\frac{x^2}{a^2} - \frac{y^2}{b^2} =$	1(a > 0, b > 0)的渐过	丘线方程为 $y=\pm 3x$,	则双曲线的离心率是						
()									
$A. \sqrt{10}$	$B. \frac{\sqrt{10}}{10}$	$C. \frac{3\sqrt{10}}{10}$	D. $3\sqrt{10}$						
3. 等差数列 $\{a_n\}$ 和 $\{b_n\}$ 的	J 前 n 项和分别记为 S_n	$ \exists T_n, \ $	则 $\frac{a_2+a_9}{b_3}$ =()						
A. $\frac{12}{7}$	B. $\frac{32}{17}$	C. $\frac{16}{7}$	D. 2						
4. 已知 α , β 是两个平面,	m, n 是两条直线,[则下列命题错误的是	()						
A. 如果 α // β , $n \subset \alpha$,	那么n // β								
B. 如果 $m \perp \alpha$, $n // \alpha$,	那么 $m \perp n$								
C. 如果 m // n , $m \perp \alpha$,	那么 $n \perp \alpha$								
D. 如果 $m \perp n$, $m \perp \alpha$,	$n//\beta$,那么 $\alpha \perp \beta$								

5. 为了更好的了解党的历史,宣传党的知识,传颂英雄事迹,某校团支部6人组建了"党史宣讲"、"歌 曲演唱"、"诗歌创作"三个小组,每组2人,其中甲不会唱歌,乙不能胜任诗歌创作,则组建方法有种()

C. 30 A. 60 B. 72 D. 42

6. 已知直线 l_1 : (m-1)x + my + 3 = 0 与直线 l_2 : (m-1)x + 2y - 1 = 0 平行, 则"m = 2"是" l_1 平行于 l_2 " 的

()

A. 必要不充分条件

B. 充分不必要条件

C. 充要条件

D. 既不充分也不必要条件

7. 已知 α , $\beta \in (0,\frac{\pi}{2})$, $2\tan \alpha = \frac{\sin 2\beta}{\sin \beta + \sin^2 \beta}$,则 $\tan(2\alpha + \beta + \frac{\pi}{3}) = ($)

- $A. \sqrt{3}$
- B. $-\frac{\sqrt{3}}{2}$ C. $\frac{\sqrt{3}}{2}$ D. $\sqrt{3}$

8. 双曲线 $C: x^2 - y^2 = 4$ 的左,右焦点分别为 F_1, F_2 ,过 F_2 作垂直于x轴的直线交双曲线于A, B两点,

 $\triangle AF_1F_2$, $\triangle BF_1F_2$, $\triangle F_1AB$ 的内切圆圆心分别为 O_1 , O_2 , O_3 , 则 $\triangle O_1O_2O_3$ 的面积是

()

- A. $6\sqrt{2} 8$
- B. $6\sqrt{2} 4$ C. $8 4\sqrt{2}$ D. $6 4\sqrt{2}$

二、多选题:本题共3小题,共18分。在每小题给出的选项中,有多项符合题目要求。全部选对的得6分, 部分选对的得2分,有选错的得0分。

9. 关于函数 $f(x) = \sin|x| + |\sin x|$ 有下述四个结论,其中错误的是()

A. f(x)是偶函数

- B. f(x)在区间($\frac{\pi}{2}$, π)单调递增
- C. f(x)在[$-\pi$, π]有 4 个零点
- D. f(x)的最大值为 2
- 10. 已知复数 z_1 , z_2 , 满足 $|z_1|$ · $|z_2|$ ≠ 0, 下列说法正确的是()
- A. 若 $|z_1| = |z_2|$,则 $z_1^2 = z_2^2$
- B. $|z_1 + z_2| \le |z_1| + |z_2|$

C. 若 $z_1z_2 \in R$,则 $\frac{z_1}{z_2} \in \mathbf{R}$

D. $|z_1z_2| = |z_1||z_2|$

11. 已知函数f(x)的定义域为R,且 $f(x+y)f(x-y)=f^2(x)-f^2(y)$, $f(1)=\sqrt{3}$, $f(2x+\frac{3}{2})$ 为偶函数,则 ()

A. f(0) = 0

B. f(x)为偶函数

C. f(3 + x) = -f(3 - x)

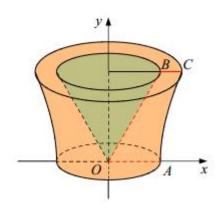
D. $\sum_{k=1}^{2023} f(k) = \sqrt{3}$

三、填空题:本题共3小题,每小题5分,共15分。

12. 定义集合运算: $A \odot B = \{z | z = xy(x + y), x \in A, y \in B\}$, 集合 $A = \{0,1\}, B = \{2,3\}$, 则集合 $A \odot B$ 所有元 素之和为

13. 早在南北朝时期,祖冲之和他的儿子祖暅在研究几何体的体积时,得到了如下的祖暅原理:幂势既同, 则积不容异。这就是说,夹在两个平行平面间的两个几何体,如果被平行于这两个平面的任意平面所截, 两个截面的面积总相等,那么这两个几何体的体积一定相等,将双曲线 $C_1: x^2 - \frac{y^2}{3} = 1$ 与 $y = 0, y = \sqrt{3}$ 所围 成的平面图形(含边界)绕其虚轴旋转一周得到如图所示的几何体 Γ ,其中线段OA为双曲线的实半轴,点B

和点C为直线 $y = \sqrt{3}$ 分别与双曲线一条渐近线及右支的交点,则线段BC旋转一周所得的图形的面积是____,几何体 Γ 的体积为



14. 已知X为包含v个元素的集合($v \in N^*, v \ge 3$).设A为由X的一些三元子集(含有三个元素的子集)组成的集合,使得X中的任意两个不同的元素,都恰好同时包含在唯一的一个三元子集中,则称(X,A)组成一个v阶的 Steiner三元系.若(X,A)为一个 7 阶的Steiner三元系,则集合A中元素的个数为

四、解答题:本题共5小题,共77分。解答应写出文字说明,证明过程或演算步骤。

15. (本小题 13 分)

已知函数 $f(x) = \ln x + ax - a^2x^2 (a \ge 0)$.

- (1)若x = 1 是函数y = f(x)的极值点,求a的值;
- (2)求函数y = f(x)的单调区间.

16. (本小题 15 分)

A, B, C, D四人进行羽毛球单打循环练习赛,其中每局有两人比赛,每局比赛结束时,负的一方下场,第 1 局由A, B对赛,接下来按照C, D的顺序上场第 2 局、第 3 局(来替换负的那个人),每次负的人其上场顺序排到另外 2 个等待上场的人之后(即排到最后一个),需要再等 2 局(即下场后的第 3 局)才能参加下一场练习赛. 设各局中双方获胜的概率均为 $\frac{1}{3}$,各局比赛的结果相互独立.

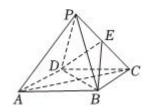
- (1)求前 4 局A都不下场的概率;
- (2)用X表示前 4 局中B获胜的次数,求X的分布列和数学期望.

17. (本小题 15 分)

四棱锥P-ABCD中,四边形ABCD为菱形,AD=2, $\angle BAD=60$ °,平面PBD \bot 平面ABCD.

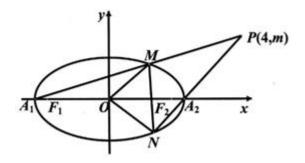
(1)证明: $PB \perp AC$;

(2)若PB = PD,且PA与平面ABCD成角为 60°,点E在棱PC上,且 $\overrightarrow{PE} = \frac{1}{3}\overrightarrow{PC}$,求平面EBD与平面BCD的夹角的余弦值.



18.(本小题 17 分)

如图,已知椭圆C: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$ 的左、右项点分别为 A_1 , A_2 ,左右焦点分别为 F_1 , F_2 ,离心率为 $\frac{\sqrt{3}}{2}$, $|F_1F_2| = 2\sqrt{3}$,O为坐标原点.



(I)求椭圆C的方程;

(II)设过点P(4,m)的直线 PA_1 , PA_2 与椭圆分别交于点M,N,其中m>0,求 \triangle OMN的面积S的最大值.

19. (本小题 17 分)

已知
$$A_m = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,m} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m\,1} & a_{m\,2} & \cdots & a_{m\,m} \end{pmatrix} (m \geq 2)$$
是 m^2 个正整数组成的 m 行 m 列的数表,当 $1 \leq i < s \leq m, 1 \leq m$

 $j < t \leq m$ 时,记 $d(a_{i,j},a_{s,t}) = |a_{i,j} - a_{s,j}| + |a_{s,j} - a_{s,t}|$.设 $n \in N^*$,若 A_m 满足如下两个性质:

$$\mathcal{D}a_{i,j} \in \{1,2,3;\cdots,n\} (i=1,2,\cdots,m;j=1,2,\cdots,m);$$

②对任意 $k \in \{1,2,3,\cdots,n\}$,存在 $i \in \{1,2,\cdots,m\}$, $j \in \{1,2,\cdots,m\}$,使得 $a_{i,j} = k$,则称 A_m 为 Γ_n 数表.

(1)判断
$$A_3 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 2 \end{pmatrix}$$
是否为 Γ_3 数表,并求 $d(a_{1,1},a_{2,2}) + d(a_{2,2},a_{3,3})$ 的值;

(2)若 Γ_2 数表 A_4 满足 $d(a_{i,j},a_{i+1,j+1})=1(i=1,2,3;j=1,2,3)$,求 A_4 中各数之和的最小值;

(3)证明:对任意
$$\Gamma_4$$
数表 A_{10} ,存在 $1 \le i < s \le 10$, $1 \le j < t \le 10$,使得 $d(a_{i,j}, a_{s,t}) = 0$.

【新结构】江苏省南通市 2024 届新高考适应性调研试题 答案和解析

【答案】

1. B 2.A 3. D 4. D 5. D

6. *B*

7. B

8. A

9. *BC*

10. BD

11. ACD

12. 18

13.
$$\pi$$
 ; $\frac{4\sqrt{3}}{3}\pi$

14.7

15. 解: (1) 函数定义域为(0,+∞),
$$f'(x) = \frac{-2a^2x^2 + ax + 1}{x}$$

因为 x=1 是函数 y=f(x) 的极值点,所以 $f'(1)=1+a-2a^2=0$,解得 $a=-\frac{1}{2}$ 或 a=1,

因为 $a \ge 0$, 所以a = 1.

此时
$$f'(x) = \frac{-2x^2 + x + 1}{x} = \frac{-(2x+1)(x-1)}{x}$$

f'(x) > 0 得 0 < x < 1函数单调递增, f'(x) < 0 得 x > 1 函数单调递减,

所以x=1是函数的极大值.

所以a=1.

(2) 若
$$a = 0$$
, $f'(x) = \frac{1}{x} > 0$,

则函数 f(x) 的单调增区间为 $(0,+\infty)$;

若
$$a > 0$$
, $f'(x) = \frac{-2a^2x^2 + ax + 1}{x} = \frac{(2ax+1)(-ax+1)}{x}$,

因为a > 0,x > 0,则2ax + 1 > 0,

由 f'(x) > 0,结合函数的定义域,可得 $0 < x < \frac{1}{a}$;

由
$$f'(x) < 0$$
 , 可得 $x > \frac{1}{a}$;

:. 函数的单调增区间为 $(0,\frac{1}{a})$; 单调减区间为 $(\frac{1}{a},+\infty)$.

综上可知: 当a=0时,函数f(x)在 $(0,+\infty)$ 上单调递增,无递减;

当 a > 0 时,函数 f(x) 在 $(0,\frac{1}{a})$ 上单调递增,在 $(\frac{1}{a},+\infty)$ 上单调递减.

16. 解: (1) 前 4 局 A 都不下场说明前 4 局 A 都获胜,

故前 4 局 A 都不下场的概率为 $P = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{16}$.

(2)X 的所有可能取值为 0, 1, 2, 3, 4,

其中, X = 0 表示第 1 局 B 输, 第 4 局是 B 上场, 且 B 输, 则 $P(X = 0) = \frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$;

X=1表示第 1 局 B输,第 4 局是 B上场,且 B赢;或第 1 局 B赢,且第 2 局 B输,

则
$$P(X=1) = \frac{1}{2} \times \frac{1}{2} + \frac{1}{2} \times \frac{1}{2} = \frac{1}{2}$$
;

X = 2表示第 1 局 B 赢, 且第 2 局 B 赢, 第 3 局 B 输,

则
$$P(X=2) = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{8}$$
;

X = 3表示第 1 局 B 贏, 且第 2 局 B 贏, 第 3 局 B 贏, 第 4 局 B 输,

$$\text{III } P(X=3) = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{16};$$

X = 4 表示第 1 局 B 赢,且第 2 局 B 赢,第 3 局 B 赢,第 4 局 B 赢,

则
$$P(X = 4) = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{16}$$
.

所以X的分布列为

X	0	1	2	3	4
P	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{8}$	1 16	1 16

故 X 的数学期望为 $E(X) = 0 \times \frac{1}{4} + 1 \times \frac{1}{2} + 2 \times \frac{1}{8} + 3 \times \frac{1}{16} + 4 \times \frac{1}{16} = \frac{19}{16}$.

17. 解: (1) 证明: 因为四边形 ABCD 为菱形,

所以 $BD \perp AC$,

因为平面 PBD \bot 平面 ABCD, 平面 PBD \cap 平面 ABCD = BD , AC \subset 平面 ABCD , 所以 AC \bot 平面 PBD ,

因为PB \subset 平面PBD, 故 $AC \perp PB$.

(2) 设 $AC \cap BD = O$, 则 O 为 $AC \setminus BD$ 的中点,

又因为PB = PD,

所以 $PO \perp BD$,

又因为AC 上平面PBD, PO 二平面PBD,

所以 $PO \perp AC$,

因为 $AC \cap BD = O$, AC、 $BD \subset$ 平面ABCD,

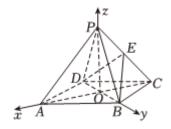
所以PO 上平面ABCD,

所以 $\angle PAO$ 为PA与平面ABCD所成角,故 $\angle PAO = 60^{\circ}$,

由于四边形 ABCD 为边长为 AD = 2 , $\angle BAD = 60^{\circ}$ 的菱形,

所以
$$AO = AD \sin 60^\circ = 2 \times \frac{\sqrt{3}}{2} = \sqrt{3}$$
, $PO = AO \tan \angle PAO = \sqrt{3} \times \sqrt{3} = 3$,

以点 O 为坐标原点,OA、OB、OP 所在直线分别为 x、y、z 轴建立如下图所示的空间直角坐标系:



则 $A(\sqrt{3},0,0)$, $C(-\sqrt{3},0,0)$, B(0,1,0) , D(0,-1,0) , P(0,0,3) ,

得
$$\overrightarrow{BE} = \overrightarrow{BP} + \overrightarrow{PE} = (0, -1, 3) + (-\frac{\sqrt{3}}{3}, 0, -1) = (-\frac{\sqrt{3}}{3}, -1, 2)$$
,且 $\overrightarrow{DB} = (0, 2, 0)$,

设平面 BEC 的法向量为 $\vec{m} = (,,)$

则
$$\left\{ \overrightarrow{m} \cdot \overrightarrow{DB} = 2y = 0 \overrightarrow{m} \cdot \overrightarrow{BE} = -\frac{\sqrt{}}{3}x - y + 2z = 0 \right.$$

取
$$x = 2\sqrt{3}$$
 , 则 $z = 1$, $y = 0$,

所以 $\vec{m} = (2\sqrt{3}, 0, 1)$,

又平面 BCD 的一个法向量为 $\vec{n} = (0,0,1)$,

所以
$$|\cos\langle \vec{m}, \vec{n} \rangle| = \frac{|\vec{m} \cdot \vec{n}|}{|\vec{m}| \cdot |\vec{n}|} = \frac{1}{\sqrt{13} \times 1} = \frac{\sqrt{13}}{13}$$

所以平面 EBD 与平面 BCD 的夹角的余弦值为 $\frac{\sqrt{13}}{13}$.

18. 解: (I) :: 离心率为
$$\frac{\sqrt{3}}{2}$$
, $|F_1F_2| = 2\sqrt{3}$, $\therefore \left\{ \frac{c}{a} = \frac{\sqrt{3}}{2} 2c = 2\sqrt{3} \right\}$,

∴
$$a=2$$
, $c=\sqrt{3}$, \emptyset $b=1$,

:. 椭圆 *C* 的方程的方程为:
$$\frac{x^2}{4} + y^2 = 1$$
.

(
$$II$$
)由(I)得 A_1 (-2,0), A_2 (2,0),

直线
$$PA_1$$
, PA_1 的方程分别为: $y = \frac{m}{6}(x+2)$, $y = \frac{m}{2}(x-2)$,

由
$$\left\{ y = \frac{m}{6}(x+2)\frac{x^2}{4} + y^2 = 1 \right\} \left\{ (9+m^2)x^2 + 4m^2x + 4m^2 - 36 = 0 \right\}$$

∴
$$-2 + x_M = \frac{-4m^2}{9 + m^2}$$
, $\exists \exists x_M = \frac{18 - 2m^2}{9 + m^2}$, $y_M = \frac{m}{6}(x_M + 2) = \frac{6m}{9 + m^2}$

由
$$\left\{ y = \frac{m}{2}(x-2)\frac{x^2}{4} + y^2 = 1 \right\}$$
, 可得 $(1+m^2)x^2 - 4mx + 4m^2 - 4 = 0$,

$$\therefore 2 + x_N = \frac{4m^2}{1 + m^2}, \quad 可得 x_N = \frac{2m^2 - 2}{1 + m^2}, \quad y_N = \frac{m}{2}(x_N - 2) = \frac{-2m}{1 + m^2},$$

$$k_{MN} = \frac{y_M - y_N}{x_M - x_N} = \frac{2m}{3 - m^2}$$
,

直线 MN 的方程为:
$$y - \frac{-2m}{1+m^2} = \frac{2m}{3-m^2} (x - \frac{2m^2-2}{1+m^2})$$
,

$$y = \frac{2m}{3 - m^2} \left(x - \frac{2m^2 - 2}{1 + m^2}\right) - \frac{2m}{1 + m^2} = \frac{2m}{3 - m^2} \left(x - \frac{2m^2 - 2}{1 + m^2} - \frac{3 - m^2}{1 + m^2}\right) = \frac{2m}{3 - m^2} (x - 1) ,$$

可得直线 MN 过定点 (1,0), 故设 MN 的方程为: x = ty + 1,

由
$$\begin{cases} x = ty + 2\frac{x^2}{4} + y^2 = 1 \Leftrightarrow (t^2 + 4)y^2 + 2ty - 3 = 0 \end{cases}$$

设
$$M(x_1, y_1)$$
, $N(x_2, y_2)$, 则 $y_1 + y_2 = \frac{-2t}{t^2 + 4}$, $y_1 y_2 = \frac{-3}{t^2 + 4}$,

$$|y_1 - y_2| = \sqrt{(y_1 + y_2)^2 - 4y_1y_2} = \frac{4\sqrt{t^2 + 3}}{t^2 + 4}$$

:
$$\Box OMN$$
 的面积 $S = \frac{1}{2} \times 1 \times (y_1 - y_2) = 2 \frac{\sqrt{t^2 + 3}}{t^2 + 4}$,

$$\diamondsuit \sqrt{t + 3} = d, (d \geqslant \sqrt{3}), \quad \text{in } s = \frac{2d}{d^2 + 1} = \frac{2}{d + \frac{1}{d}},$$

$$\therefore d \geqslant \sqrt{3}$$
,且函数 $f(d) = d + \frac{1}{d}$ 在 $[\sqrt{3}, +\infty)$ 递增,

$$\therefore$$
 当 $d = \sqrt{3}$, s 取得最小值 $\frac{\sqrt{3}}{2}$.

19. 解: (1)
$$A_3 = \begin{pmatrix} 1 & 2 & 32 & 3 & 13 & 1 & 2 \end{pmatrix}$$
 是 Γ_3 数表,

$$d(a_{1,1}, a_{2,2}) + d(a_{2,2}, a_{3,3}) = 2 + 3 = 5.$$

(2) 由题可知
$$d(a_{i,j}, a_{i+1,j+1}) = |a_{i,j} - a_{i+1,j}| + |a_{i+1,j} - a_{i+1,j+1}| = 1$$
 $(i = 1, 2, 3; j = 1, 2, 3)$.

当
$$a_{i+1,j} = 1$$
 时,有 $d(a_{i,j}, a_{i+1,j+1}) = |a_{i,j} - 1| + |a_{i+1,j+1} - 1| = 1$,

所以
$$a_{i,j} + a_{i+1,j+1} = 3$$
.

当
$$a_{i+1,j} = 2$$
 时,有 $d(a_{i,j}, a_{i+1,j+1}) = |a_{i,j} - 2| + |a_{i+1,j+1} - 2| = 1$,

所以
$$a_{i,j} + a_{i+1,j+1} = 3$$
.

所以
$$a_{i,j} + a_{i+1,j+1} = 3(i=1,2,3; j=1,2,3).$$

所以
$$a_{1,1} + a_{2,2} + a_{3,3} + a_{4,4} = 3 + 3 = 6$$
, $a_{1,3} + a_{2,4} = 3$, $a_{3,1} + a_{4,2} = 3$.

$$a_{1,2} + a_{2,3} + a_{3,4} = 3 + 1 = 4$$
 或者 $a_{1,2} + a_{2,3} + a_{3,4} = 3 + 2 = 5$,

$$a_{2,1} + a_{3,2} + a_{4,3} = 3 + 1 = 4$$
 或者 $a_{2,1} + a_{3,2} + a_{4,3} = 3 + 2 = 5$,

$$a_{1,4} = 1 \implies a_{1,4} = 2$$
 , $a_{4,1} = 1 \implies a_{4,1} = 2$,

故各数之和 ≥6+3+3+4+4+1+1=22,

当 $A_4 = \begin{pmatrix} 1 & 1 & 1 & 1 & 2 & 2 & 21 & 2 & 1 & 11 & 2 & 1 & 2 \end{pmatrix}$ 时,各数之和取得最小值 22.

(3) 由于 Γ_4 数表 A_{10} 中共 100 个数字,

必然存在 $k \in \{1,2,3,4\}$, 使得数表中 k 的个数满足 $T \ge 25$.

设第 i 行中 k 的个数为 r_i ($i = 1, 2, \dots, 10$).

当 $r \ge 2$ 时,将横向相邻两个 k 用从左向右的有向线段连接,

则该行有 $r_i - 1$ 条有向线段,

所以横向有向线段的起点总数 $R = \sum_{r>2} (r_i - 1) \ge \sum_{i=1}^{i=1} (r_i - 1) = T - 10.$

设第j列中k的个数为 $c_i(j=1,2,\dots,10)$.

当 $c \ge 2$ 时,将纵向相邻两个 k 用从上到下的有向线段连接,

则该列有 $c_i - 1$ 条有向线段,

所以纵向有向线段的起点总数 $C = \sum_{c_j \ge 2} (c_j - 1) \ge \sum_{10}^{j=1} (c_j - 1) = T - 10.$

所以 $R+C \geqslant 2T-20$,

因为 $T \ge 25$, 所以 $R + C - T \ge 2T - 20 - T = T - 20 > 0$.

所以必存在某个 k 既是横向有向线段的起点,又是纵向有向线段的终点,

即存在 $1 < u < v \le 10, 1 < p < q \le 10,$

使得 $a_{u,p} = a_{v,p} = a_{v,q} = k$,

所以 $d(a_{u,p}, a_{v,q}) = |a_{u,p} - a_{v,p}| + |a_{v,p} - a_{v,q}| = 0$,

则命题得证.

【解析】

1. 【分析】

本题考查求百分位数,属于基础题.

根据百分位数的定义即可得到答案.

【解答】

解: 因为 $8 \times 15\% = 1.2$,根据百分位数的定义可知,该数学成绩的第 15 百 分位数为第 2 个数据 70. 故选: B.

2. 【分析】

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问: https://d.book118.com/07800003400 6006121