# 新型降糖药的临床应用及用药交待

上海市浦东医院药剂科 2019.11.07



\* 肠促胰素类药物

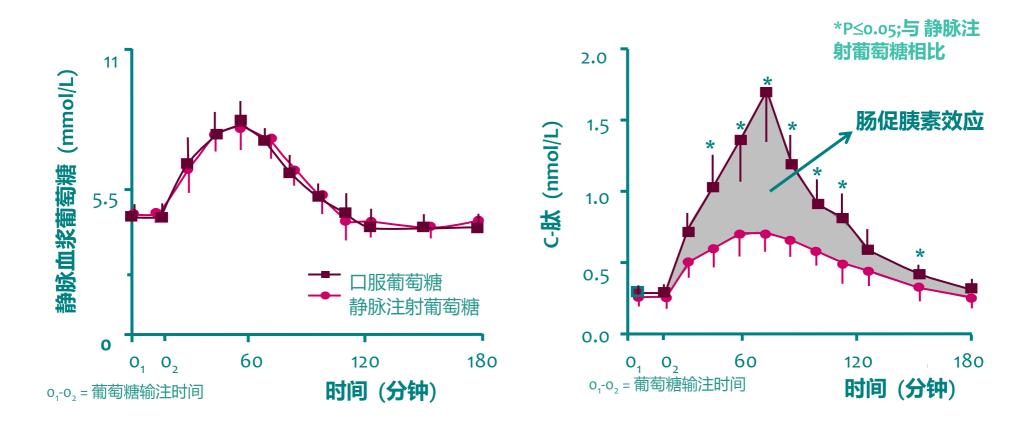
GLP-1受体激动剂

DPP-4酶抑制剂

\* SGLT-2受体激动剂

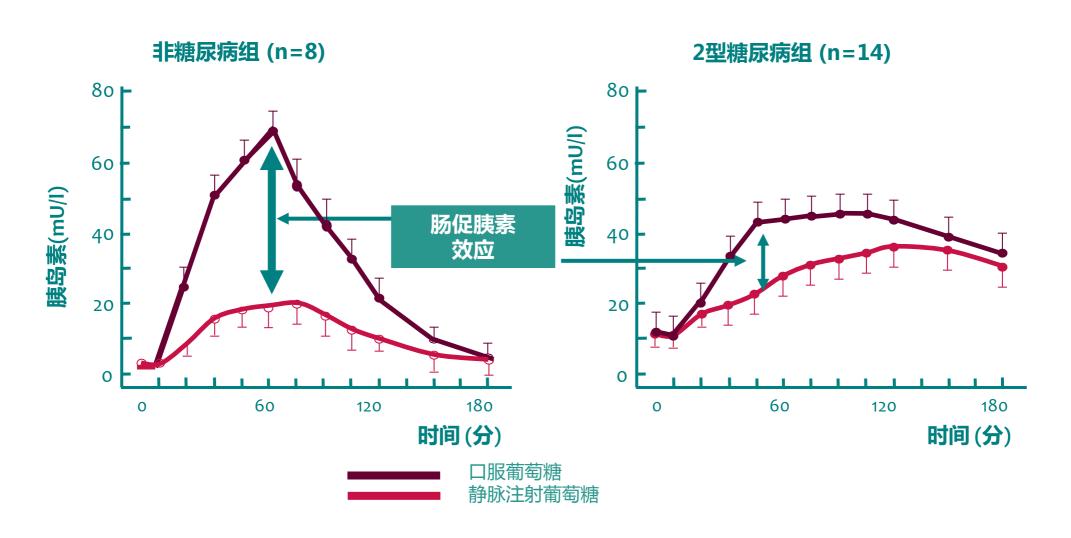
# [ 肠促胰素类药物

——GLP-1受体激动剂

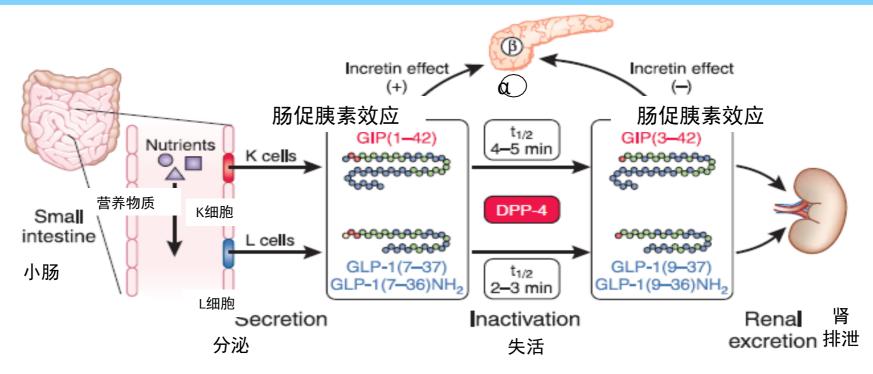

——DPP-4酶抑制剂

### 肠促胰素类药物的发现和发展

- 二十世纪初期,人们发现营养物质摄入后,从肠道分泌的某种激素可以刺激胰岛素分泌,从而产生降低血糖的作用。
- 1929年,中国学者冯德培、侯祥川、林可胜教授在国际上率先发现并命名了 肠抑胃素。
- 同年,Zunz和LaBarre 教授发现在狗身上应用这汇总物质后可引发低血糖,进而将该物质命名为"肠促胰素"。
- 1969年,Unger和Eisentraut等首先以"肠-胰岛轴"来描述肠道和胰岛之间的 关联,提示这样一个系统能够整合从肠道到胰岛细胞之间的营养、神经和激 素信号,从而调控胰岛素、胰高血糖素、生长抑素或胰多肽的分泌。
- 营养物质尤其是碳水化合物可刺激这类激素的释放,当血糖升高时刺激胰岛素释放。


### 肠促胰素效应的发现

- \* 肠促胰素是在摄食后由小肠内分泌细胞反应性分泌的一种激素
- \* 一项试验检测8名健康受试者**口服葡萄糖**(50g)和**静脉注射葡萄糖**的反应,结果,与静脉注射葡萄糖相比,口服葡萄糖后,患者的血清C肽水平更高,由此证实了肠促胰素效应




\* Nauck J. Clin Endocrinol Metab 1986;63:492-498.

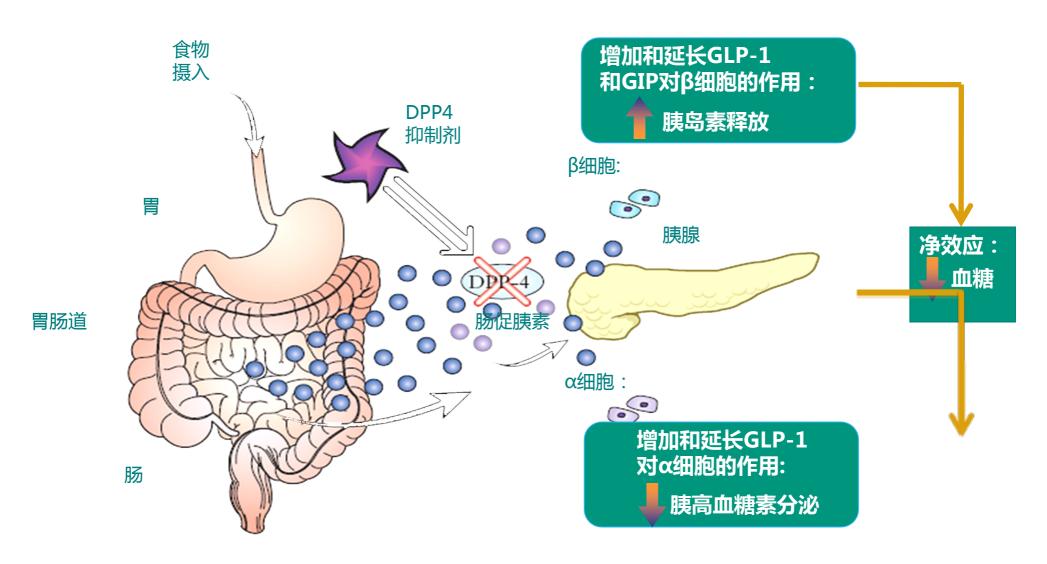
### 2型糖尿病患者肠促胰素效应减弱



### 肠促胰素GIP和GLP-1的分泌及代谢



| 名称   | 葡萄糖依赖性促胰岛素分泌多肽(GIP)                                                                    | 胰高血糖素样多肽-1(GLP-1)                   |
|------|----------------------------------------------------------------------------------------|-------------------------------------|
| 分泌部位 | 上消化道的K细胞                                                                               | 回肠和结肠的L细胞                           |
| 排泄   | 迅速被二肽基肽酶 (DPP-4)酶解失活,进而由肾排泄                                                            |                                     |
|      | 与胰腺β细胞上的特异性受体结合,促进胰岛素分泌,但T2DM的循环GIP水平正常或升高,同时GIP对β细胞的促胰岛素分泌作用显著降低,对α细胞也没有作用,因而限制了其临床应用 | 葡萄糖依赖性的促进胰岛素合成和分泌、抑制β细胞凋亡,一直胰高糖素分泌等 |


### GLP-1在体内快速降解



- 提高 GLP-1作用的治疗方法:
  - 模拟 GLP-1作用的药物 (肠促胰素类似物)
  - 延长内源性活性GLP-1的药物(DPP-4 抑制剂)

<sup>2.</sup> Gallwitz et al. Eur J Biochem. 1994

## 通过调节α及β细胞功能降低血糖



\* 选自Drucker和Nauck, 2006; Idris和Donnelly, 2007; Barnett, 2006

### 基于GLP-1的药物



### GLP-1受体激动剂

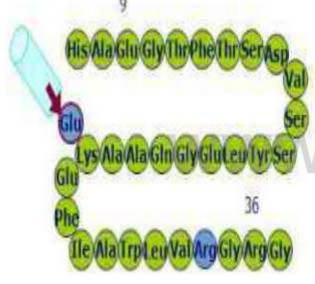
### 艾塞那肽(Exenatide,商品名百泌达)



短效GLP-1受体激动剂

2005年首个获准的GLP-1类似物

是两栖动物美洲毒蜥唾液中多肽exendin-4的人工合成多肽有53%的序列与哺乳动物GLP-1重叠,可耐受DPP-4的降解T<sub>1/2</sub>=10h


最初通过肾小球滤过作用被排出,随后在蛋白酶的作用下被水解

不推荐终末期肾病及肾功能严重损害的患者使用(肌酐清除率<30ml/min)

### GLP-1受体激动剂

### 利拉鲁肽(Liraglutide,商品名诺和力)

#### C-16棕榈酰脂肪酸



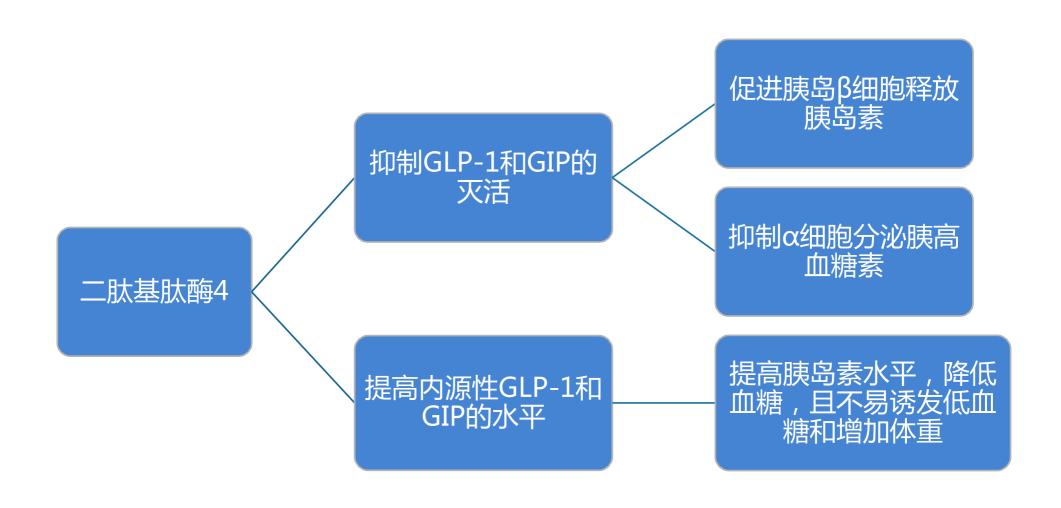
- ●长效人GLP-1类似物
- ●与天然GLP-1 高度同源(97%)
- •其分子结构是在天然GLP-1分子结构上更换了一个氨基酸,并增加了一个16碳棕榈酰侧链,由于这个脂肪酸侧链的存在,使其不易被降解,且能与白蛋白结合从而增加代谢稳定性
- ●T1/2=13h
- ●有效作用时间达24小时

## 基于GLP-1的药物

### 利拉鲁肽在多方面优于艾塞那肽

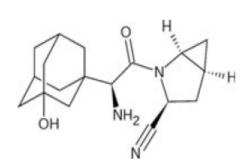
| 项目         | 利拉鲁肽   | 艾塞那肽    |
|------------|--------|---------|
| 用法         | QD     | BID     |
| 同源性        | 高(97%) | 低(53%)  |
| 抗体是否影响降糖疗效 | 无影响    | 高滴度影响降糖 |
| 恶心持续时间     | 短      | 长       |
| HbAlc降低    | 大      | 较小      |

### 作用特点

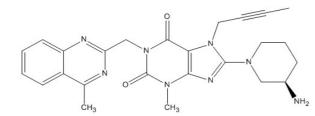

遇强则强

遇弱则停

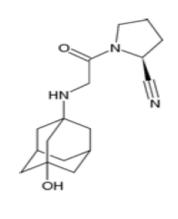
不容易出现低血糖


降糖的同时还有额外的心血管收益,而且可以减少食物摄 取和延缓胃排空,有利于控制体重 V DPP-4酶抑制剂

## DPP-4酶抑制剂的作用机制




# 目前上市的5种DPP-4抑制剂


#### 沙格列汀(安立泽) 氰基吡咯烷类



利格列汀(欧唐宁) 甲基黄嘌呤类



维格列汀(佳维乐) 氰基吡咯烷类



阿格列汀(尼欣娜) 嘧啶二酮类衍生物

Scheen AJ. Diabetes, Obesity and Metabolism 12: 648–658, 2010.

西格列汀(捷诺维)

 $NH_2$ 

β苯乙胺类

# 各种DPP-4抑制剂的用法用量

|        | 西格列汀       | 沙格列汀               | 维格列汀     | 利格列汀   | 阿格列汀    |
|--------|------------|--------------------|----------|--------|---------|
| 剂量(mg) | 100mg QD   | 5mg QD             | 50mg BID | 5mg QD | 25mg QD |
| 半衰期(h) | 12.4       | 2.5<br>3.1(活性代谢产物) | 2-3      | 120    | 21.4    |
| 用药时间   | 服药时间不受进餐影响 |                    |          |        |         |

1. Golightly LK, et al. Clin Pharmacokinet.2012;51(8): 501-514 2. Wang et al. BMC Pharmacology 2012, 12:2

|                       | 西格列汀             | 沙格列汀               | 维格列汀     | 利格列汀    | 阿格列汀     |
|-----------------------|------------------|--------------------|----------|---------|----------|
| 推荐用法用量                | 100mg QD         | 5mg QD             | 50mg BID | 5mg QD  | 25mg QD  |
| 化学类别                  | β苯乙胺类            | 氰基吡咯烷类             | 氰基吡咯烷类   | 甲基黄嘌呤类  | 嘧啶二酮类衍生物 |
| 抑制DPP4酶的特点            | 竞争性抑制            | 底物样酶抑制             | 底物样酶抑制   | 竞争性抑制   | 竞争性抑制    |
| 与DPP4酶结合方式            | 非共价              | 共价                 | 共价       | 非共价     | 非共价      |
| 与DPP4酶结合方式            | 快                | 慢                  | 慢        | 快       | 快        |
| 活性GLP-1水平的增加          | 2倍               | 2-3倍               | 3倍       | 4倍      | 2-3倍     |
| DPP-4 VS DPP-8/9      | > 2600           | 100                | 100      | > 10000 | > 14000  |
| 达峰时间(h)               | 2                | 1-4                | 1.75     | 1-2     | 1-2      |
| 半衰期(h)                | 12.4             | 2.5<br>3.1(活性代谢产物) | 2-3      | 120     | 21.4     |
| 蛋白结合率(%)              | 38               | < 10               | 9        | 75-99   | 20       |
| 24小时对血浆DPP-4活<br>性的抑制 | 80%              | 70%                | 80%      | 80%     | 80%      |
| 主要CYP异构体              | CYP3A4<br>CYP2C8 | CYP3A4/5           | 未发现      | 很少代谢    | 很少代谢     |
| 主要排泄途径                | 肾                | 肝/肾                | 肝/肾      | 胆汁/肠道   | 肾<br>目   |
| 原型排泄率                 | 79               | 24                 | 23       | -90     | 60-71    |
| 经肾排泄率                 | 87               | 75                 | 85       | 5       | 76       |
| 经粪排泄率                 | 13               | 22                 | 15       | 80      | 13       |
|                       |                  |                    |          |         |          |

# 各种DPP-4与CYP酶相关的相互作用

| DPP-4抑制剂 | 药物相互作用中与XYP酶相关的描述                                                                                                                                    |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| 西格列汀     | 西格列汀不会对CYP同工酶CYP3A4、2C8或2C9产生抑制作用,根据体外研究数据,西格列汀也不会抑制CYP2D6、2C19或2B6,不会诱导CYP3A4。                                                                      |
| 沙格列汀     | CYP3A4/5强抑制剂,酮康唑显著提高沙格列汀的暴露量,应用其他CYP3A4/5强抑制剂(如阿扎那韦、克拉霉素、茚地那韦、伊曲康唑、奈法唑酮、奈非那韦、利托那韦、沙奎那韦和泰利霉素),也如预期所料提高了沙格列汀的血浆药物浓度。与CYP3A4/5强抑制剂合用时,应将沙格列汀剂量限制在2.5mg。 |
| 维格列汀     | 非细胞色素P450酶系的底物,其对CYP450酶无诱导或抑制作用,<br>所以维格列汀不太可能与活性成分为这些酶的底物、抑制剂或诱<br>导剂的药物发生相互作用。                                                                    |
| 利格列汀     | CYP3A4或Pgp的诱导剂(如利福平)会使利格列汀的暴露水平降低到亚治疗水平,很可能会降至无效的浓度,对于需要使用这类药的患者,强烈建议替换利格列汀。体内研究表明发生药物相互作用的倾向较低。                                                     |
| 阿格列汀     | 无相关描述                                                                                                                                                |

# DPP-4抑制剂在肝功能不全患者中的使用方法

| DPP-4抑制剂    | 肝功能                                            |                 |                                                     |  |
|-------------|------------------------------------------------|-----------------|-----------------------------------------------------|--|
| DPP-4յփայիկ | 正常                                             | 轻度/中度受损         | 重度受损                                                |  |
| 西格列汀        | V                                              | V               | 尚无临床应用的经验,由于西格列汀主要经过肾清除,预计严重肝功能不全不会对西格列汀的药代动力学产生影响。 |  |
| 沙格列汀        | V                                              | V               | V                                                   |  |
| 维格列汀        | 不能用于开始给药<br>前ALT和AST大于正<br>常值上限(ULN)3<br>倍的患者。 | 不能用于肝功能不全患者     |                                                     |  |
|             | 在使用维格列汀的过程中,需要定期检测肝功能                          |                 |                                                     |  |
| 利格列汀        | V                                              | V               | V                                                   |  |
| 阿格列汀        | V                                              | 肝功能检查异常的患者应慎重使用 |                                                     |  |

### DPP-4抑制剂临床使用建议

(1)对有二甲双胍禁忌证的2型糖尿病患者及老年2型糖尿病患者 DPP-4抑制剂可单药起始。

(2)对二甲双胍不耐受的2型糖尿病患者,可换用DPP-4抑制剂。

(3)对于基线 HbA1c 较高的 2型糖尿病患者 DPP-4 抑制剂可作为起始联合治疗的选择。

(4)对二甲双胍或其他降糖药治疗血糖不达标的2型糖尿病患者,尤其是餐后血糖控制不佳者,可联合 DPP-4 抑制剂。

### DPP-4抑制剂临床使用建议

(5)在其他口服降糖药出现不良反应(尤其是低血糖)时,可考虑 DPP-4抑制剂。

(6) DPP-4 抑制剂与胰岛素及胰岛素促泌剂联合应用时应注意低血糖 风险。可适当减少胰岛素及胰岛素促泌剂的剂量。

(7)不推荐在有胰腺炎病史的患者中使用 DPP-4 抑制剂,如果在使用过程中患者出现疑似胰腺炎的症状,建议停用 DPP-4 抑制剂,并作相应处理。

(8)对有心衰危险因素的患者,在沙格列汀和阿格列汀治疗期间应观察患者有否心衰的症状和体征;如出现心衰,应规范处理并停用这两种药物。

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问: https://d.book118.com/097141033004006116