

 CHANGE HISTORY

DG-06034-002_v03.7

NVIDIA

NVIDIA SMBus Post-Box Interface (SMBPBI) DG-06034-002_v03.7 | i

Version Date Authors Description of Change

01.00 November 1, 2011 MY, NG, VS Initial release

02.00

November 23, 2011

NG

Introduce Slave-Command Support, CPU

Performance Control, GPU System

Control, and System Performance Control

02.01

January 11, 2012

NG

Introduce a Get Status subcommand to

GPU Performance Control for retrieving

dynamic GPU performance state (such as

the current vPstate).

02.02

February 24, 2012

NG

Make a correction to the Master

Command-Submission Protocol diagram.

02.03 March 12, 2012 DM Made corrections to Table A.1 on page 56.

02.04

May 23, 2012

CC

Added Arg1 (GPU information) values to

Opcode 05h. (See Section “05h - Get GPU

Information” on page 23)

Section “Using the Command Register ”

on page 8 - Added Copy-bit description.

02.05

July 31, 2012

CC

Added note on direct polling to section

“01h - Get Capabilities” on page 16.

02.05a

August 22, 2012

CC

Changed the security only. No

content change.

02.06

December 6, 2012

CC

Added Opcode 0Ch: ECC statistics data,

format version 3, to support geometry

changes in Kepler GPUs. See “0Ch - Query

ECC Statistics - Format v3” on page 28 for

more information.

02.07

March 28, 2013

MY/CC

Added Opcodes 0Dh-11h: Scrat emory

and asynchronous req ommands.

02.08

May 8, 2013

MY/CC

Added Opcode 12h: Check external

power.

Removed asynchronous request 0x03

(Read the status of auxiliary power

connector).

02.09

August 6, 2013

MY/CC

Added Opcode 13h: Read Dynamic Page

Retirement Statistics

02.10 November 14, 2013 SH/CC Updated product list in Appendix A.

DG-06034-002_v03.7

Version Date Authors Description of Change

02.11 April 30, 2014 SH/CC Added Opcodes F0h—F8h.

02.12

October 13, 2015

MY/CC

Updated Table 3.7 on page 22 (07h size).

Note: This table is now provided as an

atta ent.

Added Table 3.1, “Status Return Values,”

on page 13.

Edited Table A.1 and Table A.2.

2.13

March 21, 2016

JK/CC

Added Example Code atta ent and

ex nation.

3.0

June 3, 2016

RA/CC

Added Table 3.7, “Capability Support for

Select Tesla and Quadro Products,” on

page 18.

Note: This table is now provided as an

atta ent.

3.1

June 23, 2016

RA/CC

Doc reorganization.

Added Tesla M10, K20, K40 to Table

Table 3.7 on page 18.

Note: This table is now provided as an

atta ent.

Added opcode 15h: Read thermal

parameters.

3.2

August 10, 2016

MY/JK/CC

Added opcode 14h: Query ECC Data -

Format V4.

Added opcode F9h: Assert Power Brake.

Added M6 capabilities to Table 3.7 on

page 18.

Note: This table is now provided as an

atta ent.

Updated the SDK readme file and luded

a pre-complied 64-bit binary.

3.3

December 1, 2016

RA/CC

Opcode 10h: Table 3.9 on page 36:

Added Asynchronous requests (Arg1 =

0x06, 0x07) to read the clock limit and set

the clock limit, respectively

Updated Capability Support for Tesla and

Quadro products to lude Pascal GPUs,

and converted to an atta ent.

3.4

March 1, 2017

RA/CC

Opcode 10h: Table 3.9 on page 36

arg1 0x07: Added text stating that the

clock limit set is persistent when

reloading the driver or restarting the

system.

DG-06034-002_v03.7

Version Date Authors Description of Change

3.5

March 7, 2017

MY/CC

Added Table 3.7, “GPU Capability

DWord(4),” on page 19.

Added Arg1 (0x09) to Table 3.9,

“Asynchronous Requests,” on page 36.

3.6

October 11, 2017

RA/CC

Removed "GPU request functionality"

feature from Table 3.5 on page 18.

Added G nd memory um

operating temperature to opcode 0x15

section.

Added that NVIDIA driver must be loaded

in persistence mode to make the opcode

0x15 query.

Added um SMBPBI processing time

of 100 ms on NVIDIA GPUs.

Added column in Table 3.2 on page 14

toindicate which opcodes require the

driver to be loaded.

Added opcode 0x16: Memory ECC

statistics for Volta.

3.7

October 18, 2017

RA/CC

Added opcode 0x16 to get capabilities

opcode 0x01.

Added opcode 0x16 to Table 3.2 on

page 14.

TABLE OF CONTENTS

Chapter 1: Introduction .. 1

Chapter 2: Using the SMBus Post-Box Interface 2

2.1 File Atta ents .. 2

2.1.1 Provided Atta ents ... 2

2.1.2 Accessing the Atta ents ... 3

2.2 System Interconnect .. 4

2.3 Initializing the SMBPBI .. 4

2.4 System Configuration .. 5

2.4.1 Enabling Slave Commands ... 5

2.4.2 Slave Addressing ... 5

2.5 Communicatin er the SMBus ... 7

2.5.1 Post-Box Registers ... 7

2.5.2 Using the Command Register... 8

2.5.3 Using the Data Registers .. 9

2.5.4 READY Status Code & Implementation Phases 10

2.5.5 Master Command Submission Protocol 11

Chapter 3: Interface Commands .. 12

3.1 Overview ... 12

3.1.1 Status Return Values ... 13

3.1.2 Command Listing .. 14

3.2 00h - No-op (no action) Request ... 16

3.3 01h - Get Capabilities .. 16

3.4 02h - Get Temperature (Single-Precision) 20

3.5 03h - Get Temperature (Extended-Precision) 21

3.6 04h - Get Power .. 22

3.7 05h - Get GPU Information .. 23

3.8 07h - Query ECC Statistics - Format v2 26

3.9 0Ch - Query ECC Statistics - Format v3 28

3.10

3.11

3.12

3.13

0Dh - Read From Scrat emory ... 31

0Eh - Write Into Scrat emory .. 32

0Fh - Copy Block Into Scrat emory 33

10h - Submit/Poll Asynchronous Request to GPU Driver 34

NVIDIA

NVIDIA SMBus Post-Box Interface (SMBPBI) DG-06034-002_v03.7 | iv

TABLE OF CONTENTS

3.14

3.15

3.16

3.17

3.18

3.19

3.20

3.21

3.22

3.23

3.24

3.25

3.26

3.27

3.28

3.29

11h - Access Internal State Registers 42

12h - Check External Power .. 43

13h - Read Dynamic Page Retirement Statistics 43

14h - Query ECC Statistics - Format V4 44

15h - Read Thermal Parameters .. 46

16h - Query ECC Statistics - Format V5 47

F0h - Enable/Disable Power Supply .. 50

F1h - Get Power Supply Status ... 50

F2h - Assert/Deassert PCIe Fundamental Reset State 51

F3h - Get PCIe Fundamental Reset State 52

F4h - Set/Release Thermal Alert ... 52

F5h - Get Power Brake State ... 53

F6h - Get Thermal Alert State ... 53

F7h - Set Error LED State .. 54

F8h - Get Board Power Supply Status 54

F9h - Assert Thermal Alert .. 55

Appendix A: Implementation of Specific Parameters 56
Address Offsets .. 56

Features and Capabilities .. 57

NVIDIA

NVIDIA SMBus Post-Box Interface (SMBPBI) DG-06034-002_v03.7 | v

LIST OF TABLES

Table 2.1

Table 2.2

Table 3.1

Table 3.2

Table 3.3

Table 3.4

Table 3.5

Table 3.6

Table 3.7

Table 3.8

Table 3.9

Table 3.10

Table A.1

Table A.2

GPU Command Format .. 8

Data Register Format ... 9

Status Return Values .. 13

List of Opcodes ... 14

GPU Capability DWord(0) ... 17

GPU Capability DWord(1) ... 17

GPU Capability DWord(2) ... 18

GPU Capability DWord(3) ... 18

GPU Capability DWord(4) ... 19

Get GPU Information Arg1 Encoding .. 23

Asynchronous Requests ... 36

Asynchronous Request Status Codes ... 40

GPU SMBus Register Command Codes .. 56

GPU-Specific Features and Capabilities .. 57

NVIDIA

NVIDIA SMBus Post-Box Interface (SMBPBI) DG-06034-002_v03.7 | 1

LIST OF FIGURES

Figure 2.1

Figure 2.2

Figure 2.3

Accessing the Atta ents ... 3

SMBus Post-Box Interface .. 4

Master Command-Submission Protocol .. 11

NVIDIA

NVIDIA SMBus Post-Box Interface (SMBPBI) DG-06034-002_v03.7 | 1

CHAPTER 1 INTRODUCTION

This defines an Application Programming Interfac ween a
microcontroller, typically the System Embedded Controller (EC), and the NVIDIA GPU.

This interface is provided to give the EC access to GPU thermal, power, and performance

data and perform a number of control actions. With additional (optional) hardware

interfacing, it is also possible for the GPU to use this interface to request information

from, and trigger action on, the SMBPBI Master.

This contains the following chapters:

 “Using the SMBus Post-Box Interface” on page 2

Ex ins how to use the SMBPBI.

 “Interface Commands” on page 12

Provides a list of the command opcodes and their description.

 “SMBus Interface Additional Details” on page 53

Provides additional technical details about the SMBPBI.

 “Implementation of Specific Parameters” on page 56

Lists product-specific features and register information.

NVIDIA

NVIDIA SMBus Post-Box Interface (SMBPBI) Design Guide DG-06034-002_v03.7 | 1

CHAPTER 2

INTERFACE

USING THE SMBUS POST-BOX

2.1 FILE ATTA ENTS

2.1.1 Provided Atta ents

This PDF contains the following atta ents:

OOB_Example_Code.nvzip

This file contain ample code for the purposes of demonstrating the SMPBI protocol.
It is not provided as an SDK, but can be used ustomer implementation or as a test
suite for validation, and is provided without Warranty.

oobtest.nvzip

This file contains a binary file for testing the source code. The binary can be run for test
purposes without any compilation required.

NVIDIA_products_SMBPBI_capabilties.xlsx

This shows the SMBPBI capabilities of different NVIDIA Tesla and Quadro
products.

NVIDIA

NVIDIA SMBus Post-Box Interface (SMBPBI) Design Guide DG-06034-002_v03.7 | 2

Chapter 2 : Using the SMBus Post-Box Interface

2.1.2 Accessing the Atta ents

To access the attached files, click the Atta ents tab from the left-hand toolbar of this

PDF, then select the file and click the Save option to retrieve it.

Figure 2.1 Accessing the Atta ents

NVIDIA

NVIDIA SMBus Post-Box Interface (SMBPBI) Design Guide DG-06034-002_v03.7 | 3

Note: The zip file atta ent has been renamed with a .nvzip exten-

sion so that it can be embedded in this . You must save the

attached .nvzip file and rename it to .zip before opening/extracting

the file. Do not attempt to open the file from the PDF atta ents tab

directly.

Chapter 2 : Using the SMBus Post-Box Interface

2.2 SYSTEM INTERCONNECT

The SMBus Post-Box i posed via the SMBus interface that is typically (but not always)

connected to the system Embedded Controller (EC). It may be connected through the

SMCLK and SMDAT lines of the standard PCI Express edge connector. This is the

minimum interfacing required to utilize the GPU's SMBus Post-Box interface.

Regardless of exact configuration, the GPU will always serve as a slave-device on the
SMBus. In the configuration below, the EC serves as SMBus master. From here on in this

, nt responsible for driving the bus will simply be referred to as the

SMBPBI Master or even the Master device.

For enhanced capabilities, the NVIDIA SMBPBI interface supports an optional
communication mechanism which allows the GPU to make requests to the SMBPBI

master. These requests are known as Slave Commands and require additional hardware

interfacing between the G nd the master control logic. Due to the dependency on

system software and hardware, the ability to support slave commands is considered a

system-dependent capability. As a result, the GPU driver and GPU itself must be made

aware of the capability when it is available1 . Refer to Section 2.4 for more information on

system configuration.

Figure 2.2 SMBus Post-Box Interface

2.3 INITIALIZING THE SMBPBI

At boot, the GPU Driver is responsible for initializing the GPU's SMBus Post-Box

Interface. Once initialized, this interface will be supported. On some systems, it is also

possible for the interface to be initialized earlier (pre-driver load) by the VBIOS. See

Section 2.5.4 for additional information.

1. Support for slave commands is also GPU-dependent. Refer to Appendix A for a listing
of the GPUs supporting the feature.

NVIDIA

NVIDIA SMBus Post-Box Interface (SMBPBI) Design Guide DG-06034-002_v03.7 | 4

Master

GPU

GPIO

SMB Clock/

SMB Data

SMBus

Chapter 2 : Using the SMBus Post-Box Interface

2.4 SYSTEM CONFIGURATION

The following sections describe system configuration steps needed to both announce and

enable system-dependent capabilities at system-design time.2

2.4.1 Enabling Slave Commands

As mentioned previously, slave commands constitute an optional type of communication
whereby the GPU (SMBPBI Slave) (SMBPBI) can send commands/requests to the

SMBPBI Master. This capability depends on both the presence of a GPU GPIO and the

GPU itself. When available, a GPU GPIO is used as a notification mechanism to the

master that the slave has a pending request. It is recommended that this GPIO be wired

into the master's interrupt logic to avoid polling. The G nd GPU Driver must be

made aware of this GPIO through GPIO reservation in either the GPIO BIOS

(VBIOS) or the MXM-SIS. To declare the GPIO in VBIOS, add an entry to the GPIO

Assignment Table (in the DCB) with GPIO-function 80h (SMBPBI_SLAVE_COMMAND).

Similarly, for MXM-SIS, add a GPIO Pin Entry Structure to the MXM GPIO Device

Structure with Function 80h. Refer to Section 5.6 in the MXM Graphics Module Software

Specification Version 3.0 for details on MXM configuration.

Absence of this assignment indicates that the system is not capable of supporting slave

commands (or that the facility is undesired/not-required).

2.4.2 Slave Addressing

2.4.2.1 Default Slave Address

The acts as the SMBus mas nd the G cts as the SMBus slave device. The

GPU slave SMBus address is 4Fh (b' x) by default.

2.4.2.2 Slave Addressing in Dual-GPU Systems

The system can often be configured to respond to address 4Eh (b' x) using board
straps (SMB_ALT_ADDR). This is the preferred mechanism to use when resolving

address s in dual-GPU systems.

2. Most system-dependent capabilites are announced and enabled at runtime through ex-
posure of mas nd slave capability bits.

NVIDIA

NVIDIA SMBus Post-Box Interface (SMBPBI) Design Guide DG-06034-002_v03.7 | 5

Chapter 2 : Using the SMBus Post-Box Interface

2.4.2.3 Slave Addressing in Systems with 3 or More GPUs

onfigurations where more than two GPU slave devices are present, NVIDIA
recommends that OEMs lude a multiplexer component in their designs (such as, for

example, the Pericom PI3B3253 Dual 4:1 Multiplexer). Such as component would allow

the single SMBus master to select between multiple GPU SMBus slaves that have the

same SMBus address.

2.4.2.4 Resolving Address s Dynamically

In addition to the mechanisms described above, address s may also be resolved
dynamically in some GPUs using the SMBus Address Resolution Protocol (ARP). Refer to

Appendix A for list of GPUs that support the ARP protocol and Section 5.6 of the System

Management Bus (SMBus) Specification Version 2.0 for details on the protocol itself.

2.4.2.5 um SMBPBI Processing Time

The um SMBPBI request processing time on NVIDIA GPUs is 100 ms. This implies

the master can poll the SMBPBI request on the GPU up to 10 times per second.

NVIDIA

NVIDIA SMBus Post-Box Interface (SMBPBI) Design Guide DG-06034-002_v03.7 | 6

Chapter 2 : Using the SMBus Post-Box Interface

2.5 COMMUNICATIN ER THE SMBUS

2.5.1 Post-Box Registers

The SMBPBI Mas nd GPU communicate over the SMBus using a shared set of GPU
SMBus registers (known as the Post-Box Registers). Minimally, two 32-bit registers in the

GPU SMBus register space are involved in this interface for all Post-Box operations.

These lude the:

 Command Register - Register used by the SMBPBI Master to submit requests to the

G nd for receiving completion status.

 Data Register - Register that contains the requested data upon the completion of a

request. It may also carry additional information for the G t the request

submission time. The encoding of this register is opcode-specific. Refer to Section 3.1

for more information.

Both of these registers (Command and Data) are owned by the Master. The GPU may

never write them outside of:

 Device initialization (before the interface is made available).

 When responding to a command received from the Master.

On systems and GPUs supporting slave commands, the use of a third Post-Box register

called Data-Out is required.

 Data-Out Register - Register used by the GPU to submit commands to the SMBPBI

Master. Unlike The Command-In register, this register is not generally used for

receiving completion status. The master should never write to this register unless

responding to an explicit request to do so from the GPU.

The layout of these registers is described in the following sections.

NVIDIA

NVIDIA SMBus Post-Box Interface (SMBPBI) Design Guide DG-06034-002_v03.7 | 7

Note: The SMBus command-codes needed to access these registers in

the GPU SMBPBI register space can be found in Appendix A.

Chapter 2 : Using the SMBus Post-Box Interface

2.5.2 Using the Command Register

GPU Commands are written to the Command Register in the following format:

Table 2.1 GPU Command Format

NVIDIA

NVIDIA SMBus Post-Box Interface (SMBPBI) Design Guide DG-06034-002_v03.7 | 8

Note: Before submitting the first request to the GPU, the master

must check the Status field of this regis nd should not issue a

request if the value is INACTIVE or NULL.

Bit Access Defau escription

31:31

R/W

0

Command Execute

Synchronization/execution bit. By writing "1" into this field the

SMBPBI Master submits the request for execution. Having

received the request, the GPU clears this bit. This is the

indication for the master that the request has been accepted.

Upon the completion of the request processing the GPU will fill

the status field with a status code that is guaranteed to be non-

zero. This is the indication for the master that it may collect the

results of the request.

30:30

 0

Copy

If this bit is set, then upon a successful execution of this request,

bits [23..0] of the Data Register (see Section 2.5.3) will be

copied into bits [23..0] of the Command and Status Register.

29:29

R/W

0

Must be written with zero by the master

28:24

R/W

0

Status

The value in this field characterizes the result of the request

execution by the GPU. When submitting a request, the master

must clear this field. Refer to Section 3.1.1 for a listing of

possible values.

23:16

R/W

0

Arg2

Optional opcode-specific argument to pass to the G long with

the command.

15:8

R/W

0

Arg1

Optional opcode-specific argument to pass to the G long with

the command.

7:0

R/W

0

Opcode

The request operation code.

Chapter 2 : Using the SMBus Post-Box Interface

2.5.3 Using the Data Registers

The Data Register contains the requested data upon the completion of a request. It may
also carry additional information for the G t the request submission time. The

encoding of this register is opcode-specific. Refer to “Interface Commands” on page 12

for more information.

Table 2.2 Data Register Format

Subsequent sections in this refer to this register by the names Data-In and
Data-Out. The appended modifier is to designate the context in which the register is

being used. When used to pass additional command information to the G t request

submission time, the data stored in this register is known as Data-In. Likewise, when

holding the output (or result) of a request, the data in the register is known as Data-Out.

S e this API interface uses a single data register, NVIDIA recommends that the
SMBPBI Master write data to Data Register (Data-In) only when the command has

specified an opcode that requires additional input data. Likewise, the master should

avoid reading the Data Register (Data-Out) upon completion of a command that does not

store a result in the Data Register.

NVIDIA

NVIDIA SMBus Post-Box Interface (SMBPBI) Design Guide DG-06034-002_v03.7 | 9

Bit Access Defau escription

31:0

R/W

0

Data

32-bit input/output data.

Chapter 2 : Using the SMBus Post-Box Interface

2.5.4 READY Status Code & Implementation Phases

2.5.4.1 About the Implementation Phases

There are two dist t pieces of software that implement the protocol described in this
. One is operating in the environment where the GPU driver has not been

loaded, or is inactive. This software is luded in the NVIDIA board's BIOS (or

integrated into the System BIOS). The other functions ooperation with the GPU driver

and can be viewed as an integral part of the driver (or orporated in the GPU driver).

These two phases of the protocol implementation may be somewhat different in the
functionality they implement. This difference is reflected apability dwords (see

Section 3.3). It is important for the SMBPBI Master implementation to be aware of the

capabilities that are currently available. Therefore, the protocol provides a method to

notify the master when the Implementation Phase changes (and thus the capabilities

associated with that phase).

2.5.4.2 Phase Change Notification through the Status Field

During a transitional period, when the software comes through an initialization
sequence, an INACTIVE status will be posted in the Status field. No requests should be

submitted at this time. Once the initialization is complete, the status will change to

READY and requests can be submitted. However, having received the very first request

after the phase change, the software will not execute this request, but instead will post the

READY status once again. This is done so that the master will notice the change in the

implementation phase.

At this point the master must discard all the internal state that may have been
previously cached from the interface (and that can be linked to the implementation

phase that has just terminated). This especially concerns the capability DWORDs that

may have been cached. The master should then proceed to query the currently available

capabilities. Having d his, it may then resume its operation by resubmitting the

query that has previously completed with the READY status.

The mechanism described above precludes the possibility that the implementation phase
change (and the associated capabilities change) will occur unnoticed by the SMBPBI

Master.

NVIDIA

NVIDIA SMBus Post-Box Interface (SMBPBI) Design Guide DG-06034-002_v03.7 | 10

Note: Due to potential changes in the Implementation Phase, a status

value of READY may be returned for any GPU command.

Chapter 2 : Using the SMBus Post-Box Interface

2.5.5 Master Command Submission Protocol

The diagram below shows the process for issuing commands.

Figure 2.3 Master Command-Submission Protocol

NVIDIA

NVIDIA SMBus Post-Box Interface (SMBPBI) Design Guide DG-06034-002_v03.7 | 11

以上内容仅为本文档的试下载部分，为可阅读页数的一半内容。如

要下载或阅读全文，请访问：https://d.book118.com/09803112010

5006030

https://d.book118.com/098031120105006030
https://d.book118.com/098031120105006030

