湖北省高中名校联盟 2024 届高三第四次联合测评 数学试卷

本试卷共 4 页, 19 题.满分 150 分.考试用时 120 分钟.

★祝考试顺利★

注意事项:

- 1.答题前, 先将自己的姓名、准考证号填写在试卷和答题卡上, 并将准考证号条形码贴在答 题卡上的指定位置.
- 2.选择题的作答:每小题选出答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂黑.写在 试卷、草稿纸和答题卡上的非答题区域均无效.
- 3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和 答题卡上的非答题区域均无效.
- 4.考试结束后,请将本试卷和答题卡一并上交.
- 一、选择题: 本题共 8 小题,每小题 5 分,共 40 分.在每小题给出的四个选项中,只有一项 是符合题目要

求的.

1. 己分	和复数	z 满足	$z + z_1 =$	· 1 ,	则 <i>Z</i> =	= ()
-------	-----	------	-------------	-------	--------------	-----	---

A. $\frac{1}{2} + \frac{1}{2}i$ B. $\frac{1}{2} - \frac{1}{2}i$ C. 1+i D. 1-i

- 2. 已知集合 $A = \{x \in \mathbb{R} | x^2 2x 3 > 0\}$, 集合 $B 满足 B \square A$, 则 B 可以为()
- A. [-1,3] B. $(-\infty,-1]$ C. $(-\infty,-1)$ D. $(-\infty,3)$
- 3. 某校举行"云翔杯"学生篮球比赛,统计部分班级的得分数据如下。

班级	1	2	3	4	5	6	7	8
得分	28	34	34	30	26	28	28	32

则(

A. 得分的中位数为28

B. 得分的极差为8

C. 得分的众数为34

D. 得分的平均数为 31

4. 已知 m, n 是不同的直线, α , β 是不同的平面, 则()

A 若 α // β , m // α ,	n//eta,则 $m//n$	B. 若 α // β , $m \perp \alpha$,	n//eta,则 $m//n$
C. 若 $\alpha \perp \beta$, $m \perp \alpha$,	$n \perp eta$,则 $m \perp n$	D. 若α⊥β, m//α,	$n//eta$,则 $m\perp n$
5. 在 V ABC中,若AC	$2 + BC^2 = 5AB^2 , \text{III} \frac{\tan C}{\tan A}$	$+\frac{\tan C}{\tan B} = ()$	
A. $\frac{2}{3}$	B. $\frac{1}{2}$	C. $\frac{\sqrt{3}}{2}$	D. $\frac{\sqrt{2}}{2}$
6. 已知 $\{a_n\}$ 是各项均为	正数的等比数列, $a_1 + a_2 + a_3$	$a_3 + a_4 + a_5 + a_6 = 10$, $a_1 a_2$	$a_3 a_4 a_5 a_6 = 8$, \square
$\frac{1}{a_1} + \frac{1}{a_2} + \frac{1}{a_3} + \frac{1}{a_4} + \frac{1}{a_5}$	$+\frac{1}{a_6} = ()$		
A. 2	B. 3	C. 4	D. 5
7. 过抛物线 C : $y^2 = 4$:	x 的焦点 F 作直线 l_1 , l_2 , t_3	其中 l_1 与 C 交于 M , N 两点	$, l_2$ 与 C 交于 P 、 Q 两点,
$\lim \frac{1}{ FM } + \frac{1}{ FN } + \frac{1}{ FP } + \frac{1}{ P }$	$\frac{1}{ Q } = ($		
A. 1	B. 2	C. 3	D. 4
8. 若 $\forall x \in \mathbf{R}$, $x^2 \ge -\frac{1}{2}\mathbf{c}$	$\cos 2\omega x + \frac{1}{2}$,则实数 ω 的最为	大值为()	
A 1	B. 0	C. $\frac{\pi}{3}$	D. $\frac{\pi}{2}$
二、选择题: 本题共	3小题,每小题6分,共	共18分.在每小题给出的	选项中,有多项符合题
目要求.全部选对的得	6分,部分选对的得部。	分分,有选错的得0分	
9. 已知双曲线 E : $\frac{x^2}{a^2}$ - y	$v^2 = 1(a > 0)$ 过点 $P(4, \sqrt{3})$,	则()	
A. 双曲线 E 的实轴长为	1 4		
B. 双曲线 E 的离心率为	$\sqrt{\frac{\sqrt{5}}{2}}$		
C. 双曲线 E 的渐近线方	程为 $y = \pm 2x$		
D. 过点 <i>P</i> 且与双曲线 <i>E</i>	仅有1个公共点的直线恰有	1 条	
10. 张同学从学校回家要	是经过 2 个路口,假设每个路	了口等可能遇到红灯或绿灯	,每个路口遇到红绿灯相互
独立,记事件 A: "第 1	个路口遇到绿灯",事件 B:	"第2个路口遇到绿灯", 则	

 $B. P(AB) = \frac{1}{4}$

A. $P(A) = \frac{1}{2}$

$$C P(B|\overline{A}) = \frac{1}{4}$$

D.
$$P(A+B) = \frac{3}{4}$$

- 11. 已知定义在**R**上的函数 f(x), 对任意 $x, y \in \mathbf{R}$ 有 f(x+y) = f(x) + f(y), 其中 $f(1) = \frac{1}{2}$; 当 x > 0 时, f(x) > 0 ,则()
- A. f(x)为**R**上的单调递增函数
- B. f(x) 为奇函数
- C. 若函数 f(x) 为正比例函数,则函数 $g(x) = \frac{f(x)}{e^x}$ 在 x = 0 处取极小值
- D. 若函数 f(x) 为正比例函数,则函数 $h(x) = f(x) 2\sin x 1$ 只有一个非负零点
- 三、填空题: 本题共3小题,每小题5分,共15分
- 12. 已知向量 $\vec{a} = (k,2)$, $\vec{b} = (2,1)$,若 $\vec{a} \perp \vec{b}$,则实数k =______.
- 13. 已知三棱锥 A-BCD 的四个顶点都在球 O 的球面上,且 $AB=CD=\sqrt{5}$, $AC=BD=\sqrt{10}$, $AD=BC=\sqrt{13}$,则球 O 的半径为______.
- 14. 已知直线 l_1 与曲线 $y=a\mathrm{e}^x$ 和 $y=\ln x-\ln a$ 都相切,倾斜角为 α ,直线 l_2 与曲线 $y=a\mathrm{e}^x$ 和 $y=\ln x-\ln a$ 都相切,倾斜角为 β ,则 $\tan \alpha+4\tan \beta$ 取最小时,实数 a 的值为_______

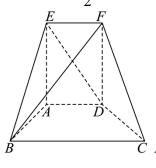
四、解答题: 本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.

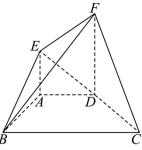
15. (1) 求证:
$$\frac{\sin 1^{\circ}}{\sin k^{\circ} \sin(k+1)^{\circ}} = \frac{\cos k^{\circ}}{\sin k^{\circ}} - \frac{\cos(k+1)^{\circ}}{\sin(k+1)^{\circ}};$$

(2) 求值:
$$\frac{1}{\cos 0^{\circ} \cos 1^{\circ}} + \frac{1}{\cos 1^{\circ} \cos 2^{\circ}} + L + \frac{1}{\cos 44^{\circ} \cos 45^{\circ}}$$
.

16. 如图,AE \bot 平面 ABCD ,E,F 在平面 ABCD 的同侧,AE//DF ,AD//BC ,AD \bot AB ,

$$AD = AB = \frac{1}{2}BC = 1$$
.





- (1) 若 B, E, F, C 四点在同一平面内, 求线段 EF 的长;
- (2) 若 DF = 2AE, 平面 BEF 与平面 BCF 的夹角为 30° , 求线段 AE 的长.
- 17. 已知函数 $f(x) = xe^x$.
- (1) 求 f(x) 的单调区间;
- (2) 若关于x的不等式 $f(x)+f(1-x) \ge a$ 恒成立,求实数a的取值范围.
- 18. 已知椭圆 E: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = \mathbb{I}(a > b > 0)$,直线 $l_1 = E$ 交于 M(-4,0), N(-2,2) 两点,点 P 在线段 MN 上 (不含端点),过点 P 的另一条直线 $l_2 = E$ 交于 $l_3 = E$ 交于 $l_4 = E$ 对 $l_5 = E$ 交 $l_5 = E$ $l_5 = E$ l
- (1) 求椭圆 E 的标准方程;
- (2) 若 MP = PN , $AP = (7 4\sqrt{3})PB$, 点 A 在第二象限,求直线 l_2 的斜率;
- (3) 若直线 MA, MB 的斜率之和为 2, 求直线 l, 的斜率的取值范围.
- 19. 组合投资需要同时考虑风险与收益. 为了控制风险需要组合低风险资产,为了扩大收益需要组合高收益资产,现有两个相互独立的投资项目 A 和 B,单独投资 100 万元项目 A 的收益记为随机变量 X,单独投资 100 万元项目 B 的收益记为随机变量 Y. 若将 100 万资金按 $\lambda A + (1-\lambda)B$ 进行组合投资,则投资收益的随机变量 Z 满足 $Z = \lambda X + (1-\lambda)Y$,其中 $0 \le \lambda \le 1$.假设在组合投资中,可用随机变量的期望衡量收益,可用随机变量的方差衡量风险.
- (1) 若 $Y \sim B(100,0.03)$, $\lambda = 0$, 求Z的期望与方差;
- (2) 已知随机变量 X 满足分布列:

X	<i>X</i> ₁	<i>X</i> ₂	<i>x</i> ₃	 X_k	 \mathcal{X}_n
P(X)	$P(X=x_1)$	$P(X=x_2)$	$P(X=x_3)$	 $P(X=x_k)$	 $P(X=x_n)$

随机变量 Y 满足分布列:

Y	\mathcal{Y}_1	${\cal Y}_2$	\mathcal{Y}_3	•••	${\cal Y}_k$	 ${\mathcal Y}_m$
P(Y)	$P(Y=y_1)$	$P(Y=y_2)$	$P(Y=y_3)$	•••	$P(Y=y_k)$	 $P(Y=y_n)$

且随机变量 X 与 Y 相互独立, 即 $P(X = x_i, Y = y_i) = P(X = x_i) \cdot P(Y = y_i)$, $Z = \lambda X + (1 - \lambda)Y$,

$$D\big(X\big) = \sum_{i=1}^n \left(x_i - E(X)\right)^2 \cdot p_i = E\big(X - E\big(X\big)\big)^2 \; . \quad \text{$\not =$} \text{ i:} \quad D\big(Z\big) = \lambda^2 D\big(X\big) + \big(1-\lambda\big)^2 \; D\big(Y\big) \; ;$$

(3) 若投资项目 X 是高收益资产, 其每年的收益满足: 有30%的可能亏损当前资产的一半; 有70%的可 能增值当前资产的一倍. 投资项目 Y 是低风险资产,满足 $Y \sim B(100,0.03)$. 试问 $\lambda = 0.3$ 能否满足投资第 1年的收益不低于17万,风险不高于500?请说明理由.

一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项 是符合题目要

求的.

1. 已知复数z满足z+zi=i,则z=(

A.
$$\frac{1}{2} + \frac{1}{2}i$$
 B. $\frac{1}{2} - \frac{1}{2}i$

B.
$$\frac{1}{2} - \frac{1}{2}i$$

C.
$$1+i$$

D. 1-i

【答案】A

【解析】

【分析】运用复数的运算规律直接求解.

【详解】因为
$$z+zi=i$$
,所以 $z(1+i)=i$,所以 $z=\frac{i}{1+i}=\frac{i(1-i)}{(1+i)(1-i)}=\frac{1}{2}+\frac{1}{2}i$.

故选: A

2. 已知集合 $A = \{x \in \mathbb{R} | x^2 - 2x - 3 > 0\}$, 集合 $B 满足 B \square A$, 则 B 可以为()

A. [-1,3]

B. $(-\infty, -1]$ C. $(-\infty, -1)$ D. $(-\infty, 3)$

【答案】C

【解析】

【分析】解一元二次不等式化简集合 A, 再利用集合的包含关系列式求解即得.

【详解】解不等式 $x^2-2x-3>0$,得x<-1或x>3,则 $A=(-\infty,-1)$ $U(3,+\infty)$,而 $B\square A$,

对于 A, $0 \in [-1,3], 0 \notin A$, A 不是;

对于 B, $-1 \in (-\infty, -1], -1 \notin A$, B 不是;

对于 C, $(-\infty, -1)$ \square A, C是;

对于 D, $0 \in (-\infty,3), 0 \notin A$, D 不是.

故选: C

3. 某校举行"云翔杯"学生篮球比赛,统计部分班级的得分数据如下.

班级	1	2	3	4	5	6	7	8
得分	28	34	34	30	26	28	28	32

则()

A. 得分的中位数为28

B. 得分的极差为8

C. 得分的众数为34

D. 得分的平均数为 31

【答案】B

【解析】

【分析】将得分数据从小到大排列,再计算出中位数、极差、平均数、众数,即可判断.

【详解】将得分数据从小到大排列为: 26, 28, 28, 28, 30, 32, 34, 34,

所以中位数为 $\frac{28+30}{2}$ =29,故A错误;

极差为34-26=8, 故B正确;

众数为28,故C错误

平均数为
$$\frac{26+28\times3+30+32+34\times2}{8}$$
=30,故D错误.

故选: B.

- 4. 已知 m, n 是不同的直线, α , β 是不同的平面, 则(
- A. 若 $\alpha//\beta$, $m//\alpha$, $n//\beta$, 则m//n B. 若 $\alpha//\beta$, $m\perp\alpha$, $n//\beta$, 则m//n
- C. 若 $\alpha \perp \beta$, $m \perp \alpha$, $n \perp \beta$, 则 $m \perp n$ D. 若 $\alpha \perp \beta$, $m / / \alpha$, $n / / \beta$, 则 $m \perp n$

【答案】C

【解析】

【分析】由面面平行,线面平行的性质可得 A 错误;由面面平行,线面垂直的性质可得 B 错误;由面面垂 直,线面垂直的性质可得 C 正确;由面面垂直,线面平行的性质可得 D 错误.

【详解】A: 若 α / / β , m / / α , n / / β , 则 m / / n 或 m , n 异面或 m , n 相交 , 故 A 错误 ;

 $C: \, \exists \, \alpha \perp \beta, \, m \perp \alpha, \, n \perp \beta, \, 则 \, m \perp n, \, 故 \, C \, 正确;$

D: 若 $\alpha \perp \beta$, $m//\alpha$, $n//\beta$, 则 $m \perp n$ 或m,n相交, 或m,n异面, 故 D 错误; 故选: C.

5. 在 VABC 中,若 $AC^2 + BC^2 = 5AB^2$,则 $\frac{\tan C}{\tan A} + \frac{\tan C}{\tan B} = ($)

A. $\frac{2}{3}$

B. $\frac{1}{2}$

C. $\frac{\sqrt{3}}{2}$

D. $\frac{\sqrt{2}}{2}$

【答案】B

【解析】

【分析】利用余弦定理结合正弦定理化边为角,再化简即可得解.

【详解】由余弦定理得: $\cos C = \frac{AC^2 + BC^2 - AB^2}{2AC \cdot BC} = \frac{4AB^2}{2AC \cdot BC} = \frac{2\sin^2 C}{\sin A \sin B}$,

$$\therefore \frac{\tan C}{\tan A} + \frac{\tan C}{\tan B} = \tan C \left(\frac{\cos A}{\sin A} + \frac{\cos B}{\sin B} \right) = \frac{\sin A \cos B + \cos A \sin B}{\sin A \sin B} \cdot \frac{\sin C}{\cos C} = \frac{\sin^2 C}{\sin A \sin B \cos C}$$

$$=\frac{\sin^2 C}{\sin A \sin B} \frac{2 \sin^2 C}{\sin A \sin B} = \frac{1}{2}.$$

故选: B.

6. 已知 $\{a_n\}$ 是各项均为正数的等比数列, $a_1+a_2+a_3+a_4+a_5+a_6=10$, $a_1a_2a_3a_4a_5a_6=8$,则

$$\frac{1}{a_1} + \frac{1}{a_2} + \frac{1}{a_3} + \frac{1}{a_4} + \frac{1}{a_5} + \frac{1}{a_6} = ()$$

A. 2

B. 3

C. 4

D. 5

【答案】D

【解析】

【分析】由已知得 $a_1 \frac{q^6-1}{q-1} = 10$ 及 $a_1^2 q^5 = 2$,代入问题化简计算即可.

【详解】由题设易知,公比 $q \neq 1$,设 $a_n = a_1 q^{n-1}$,

从而由 $a_1 + a_2 + a_3 + a_4 + a_5 + a_6 = 10$ 得, $a_1 \cdot \frac{q^6 - 1}{q - 1} = 10$,

曲 $a_1a_2a_3a_4a_5a_6 = 8$ 得, $a_1^2q^5 = 2$,

$$\operatorname{II}\left(\frac{1}{a_1} + \frac{1}{a_2} + \frac{1}{a_3} + \frac{1}{a_4} + \frac{1}{a_5} + \frac{1}{a_6} = \frac{1}{a_1} \cdot \frac{1 - \frac{1}{q^6}}{1 - \frac{1}{q}} = \frac{1}{a_1^2 q^5} \cdot \frac{a_1 \left(q^6 - 1\right)}{q - 1} = \frac{10}{2} = 5,$$

故选: D.

7. 过抛物线 C: $y^2 = 4x$ 的焦点 F 作直线 l_1 , l_2 , 其中 l_1 与 C 交于 M, N 两点, l_2 与 C 交于 P、Q 两点,

$$\operatorname{II}\left|\frac{1}{\left|FM\right|} + \frac{1}{\left|FN\right|} + \frac{1}{\left|FP\right|} + \frac{1}{\left|FQ\right|} = ()$$

A. 1

B. 2

C. 3

D. 4

【答案】B

【解析】

【分析】设出直线方程,与抛物线方程联立,设 $M\left(x_{_{\! 1}},y_{_{\! 1}}\right)$, $N\left(x_{_{\! 2}},y_{_{\! 2}}\right)$,结合根与系数的关系和抛物线定

义化简
$$\frac{1}{|MF|}$$
+ $\frac{1}{|NF|}$,同理得 $\frac{1}{|FP|}$ + $\frac{1}{|FQ|}$,得解.

【详解】由题意知4的斜率不为0,

设
$$l_1: x = my + 1$$
与 $y^2 = 4x$ 联立,得 $y^2 - 4my - 4 = 0$,

因直线过焦点,所以 $\Delta > 0$,

设
$$M(x_1, y_1)$$
, $N(x_2, y_2)$, 则 $y_1 + y_2 = 4m$, $y_1y_2 = -4$,

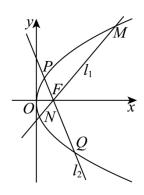
于是
$$\frac{1}{|MF|} + \frac{1}{|NF|} = \frac{1}{x_1 + 1} + \frac{1}{x_2 + 1} = \frac{x_1 + x_2 + 2}{(x_1 + 1)(x_2 + 1)} = \frac{x_1 + x_2 + 2}{x_1 x_2 + x_1 + x_2 + 1}$$
,

$$\overrightarrow{m} x_1 x_2 = (my_1 + 1)(my_2 + 1) = m^2 y_1 y_2 + m(y_1 + y_2) + 1 = -4m^2 + 4m^2 + 1 = 1$$

所以
$$\frac{1}{|MF|} + \frac{1}{|NF|} = \frac{x_1 + x_2 + 2}{x_1 x_2 + x_1 + x_2 + 1} = 1$$
,

同理
$$\frac{1}{|FP|} + \frac{1}{|FQ|} = 1$$
,所以 $\frac{1}{|FM|} + \frac{1}{|FN|} + \frac{1}{|FP|} + \frac{1}{|FQ|} = 2$.

故选: B.



8. 若 $\forall x \in \mathbf{R}$, $x^2 \ge -\frac{1}{2}\cos 2\omega x + \frac{1}{2}$, 则实数 ω 的最大值为()

A. 1

B. 0

C. $\frac{\pi}{3}$

D. $\frac{\pi}{2}$

【答案】A

【解析】

【分析】首先根据两角和公式化简可得 $x^2 \ge \sin^2 \omega x$,由 $y = x, y = \sin \omega x$ 都为奇函数且 $|\sin \omega x| \le 1$,只需 $\forall x \in [0,1]$, $x \ge \sin \omega x$ 即可,可变为 $\omega \le \frac{\omega x}{\sin \omega x}$,再设函数 $g(x) = x - \sin x$,得到经典不等式 $x \ge \sin x$ 即可得到答案...

【详解】因为 $y = -\frac{1}{2}\cos 2\omega x + \frac{1}{2}$ 为偶函数,不妨先取 $\omega > 0$,由 $x^2 \ge -\frac{1}{2}\cos 2\omega x + \frac{1}{2}$ 得 $x^2 \ge \sin^2 \omega x$,即 $|x| \ge |\sin \omega x|$,

根据 $y = \sin \omega x$ 为奇函数,且其值域为[-1,1],

则只需 $\forall x \in [0,1], x \ge \sin \omega x$,

则 $\omega x \ge \omega \sin \omega x$, 当 $\sin \omega x \le 0$ 时,不等式恒成立,

 $\Leftrightarrow g(x) = x - \sin x \,, \quad x > 0 \,,$

则 $g'(x) = 1 - \cos x \ge 0$,则 g(x) 在 $(0, +\infty)$ 上单调递增,

则 g(x) > g(0) = 0.则 $x > \sin x$,则 $\frac{\omega x}{\sin \omega x} > 1$,则 $0 < \omega \le 1$,

而 $\omega = 0$ 时, $x \ge 0$ 在 $x \in [0,1]$ 上恒成立;

当 $\omega = 1$ 时,根据 $g(x) = x - \sin x$ 单调性知 $x \ge \sin x$ 在 $x \in [0,1]$ 上恒成立,

综上 ω 的最大值为1.

故选: A.

二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分

9. 己知双曲线
$$E$$
: $\frac{x^2}{a^2} - y^2 = 1(a > 0)$ 过点 $P(4, \sqrt{3})$,则()

- A. 双曲线 E 的实轴长为 4
- B. 双曲线 E 的离心率为 $\frac{\sqrt{5}}{2}$
- C. 双曲线 E 的渐近线方程为 $y = \pm 2x$
- D. 过点 P 且与双曲线 E 仅有 1 个公共点的直线恰有 1 条

【答案】AB

【解析】

【分析】由点在双曲线上代入可得双曲线方程,然后可得实轴长可判断 A 正确,由离心率的定义可得 B 正确,由渐近线方程可得 C 错误;由两条与渐近线平行,斜率相等,一条与双曲线相切,直曲联立,由判别式为零可得 D 错误.

【详解】由
$$\frac{4^2}{a^2} - (\sqrt{3})^2 = 1$$
得 $a^2 = 4$, $\therefore \frac{x^2}{4} - y^2 = 1$.

对 A, 2a=4, 故 A 正确;

对 B,
$$e = \frac{c}{a} = \frac{\sqrt{5}}{2}$$
, 故 B 正确;

对 C, 由
$$\frac{x^2}{4} - y^2 = 0$$
 得 $y = \pm \frac{1}{2}x$, 故 C 错误;

对 D, 有 3 条, 两条与渐近线平行, 分别为 l_1 : $y-\sqrt{3}=-\frac{1}{2}(x-4)$, l_2 : $y-\sqrt{3}=\frac{1}{2}(x-4)$,

第三条与双曲线相切,设切线的斜率为k,

则
$$\begin{cases} \frac{x^2}{4} - y^2 = 1 \\ y - \sqrt{3} = k(x - 4) \end{cases}$$
, 消去 y 可得 $x^2 - 4\left[k(x - 4) + \sqrt{3}\right]^2 = 4$,

$$(1-4k^2)x^2 + (32k^2 - 8\sqrt{3}k)x - 64k^2 + 32\sqrt{3}k - 16 = 0$$
, $k \neq \pm \frac{1}{2}$,

令
$$\Delta = 0$$
, 解得 $k = \frac{\sqrt{3}}{3}$, 所以 $l_3: x - \sqrt{3}y - 1 = 0$, 故 D 错误.

故选: AB.

10. 张同学从学校回家要经过 2 个路口,假设每个路口等可能遇到红灯或绿灯,每个路口遇到红绿灯相互独立,记事件 A: "第 1 个路口遇到绿灯",事件 B: "第 2 个路口遇到绿灯",则(

A.
$$P(A) = \frac{1}{2}$$

B.
$$P(AB) = \frac{1}{4}$$

C.
$$P(B|\bar{A}) = \frac{1}{4}$$

D.
$$P(A+B) = \frac{3}{4}$$

【答案】ABD

【解析】

【分析】A 选项,直接得到 $P(A) = P(B) = \frac{1}{2}$; B 选项,根据独立事件的概率乘法公式得到 B 正确; C 选项,利用独立事件概率乘法公式和条件概率得到答案; D 选项,根据P(A+B) = P(A) + P(B) - P(AB)得到 D 正确.

【详解】对 A, $P(A) = P(B) = \frac{1}{2}$, ∴ A 正确;

对 B, A, B 相互独立, $P(AB) = P(A)P(B) = \frac{1}{4}$, :: B 选项正确;

对 C, 因为 A, B 相互独立, 所以 \overline{A} , B 也互相独立,

故
$$P(B \mid \overline{A}) = \frac{P(B\overline{A})}{P(\overline{A})} = \frac{P(B)P(\overline{A})}{1 - P(A)} = \frac{\frac{1}{2} \times \left(1 - \frac{1}{2}\right)}{1 - \frac{1}{2}} = \frac{1}{2}$$
, **∴**C 选项错误;

対 D,
$$P(A+B) = P(A) + P(B) - P(AB) = \frac{3}{4}$$
, ∴D 选项正确.

故选: ABD.

11. 已知定义在**R**上的函数 f(x), 对任意 $x, y \in \mathbf{R}$ 有 f(x+y) = f(x) + f(y), 其中 $f(1) = \frac{1}{2}$; 当 x > 0 时, f(x) > 0 ,则()

- A. f(x)为**R**上的单调递增函数
- B. f(x) 为奇函数
- C. 若函数 f(x) 为正比例函数,则函数 $g(x) = \frac{f(x)}{e^x}$ 在 x = 0 处取极小值
- D. 若函数 f(x) 为正比例函数,则函数 $h(x) = f(x) 2\sin x 1$ 只有一个非负零点

【答案】AB

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问: https://d.book118.com/108067124120006072