2021-2022 学年辽宁省名校联盟高三(上)联考数学试卷

(10月份)

1.	已知集合 $A = \{x \mid \frac{x-2}{2} \le 0\},$	集合 $B = \{x ex\}$	1 > 1},	$A \cap (C_{p}B) = ($)
	$\boldsymbol{\chi}$			Λ	

A. (1,2] B. (0,2] C. (0,1] D. [0,1]

"lna > lnb"是" $\frac{a}{b} > 1$ "的()条件

A. 充分不必要

B. 必要不充分

C. 充分必要

D. 既不充分也不必要

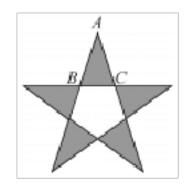
已知复数 $z = (\frac{1}{1}, \frac{1}{i})^{2021}$ ($\frac{1}{1}, \frac{1}{i}$) $\frac{1}{i}$ 2022,则z的共轭复数z = ()

A. 1 i B. 1 i C. 1 i D. 1 i

4. 已知平面向量 $\bar{a}=(1,2)$, $\bar{b}=(0,2)$, $\bar{c}=(2,1)$,若 $(\bar{a}-\lambda\bar{b})//\bar{c}$,则 $\lambda=(-)$

D. 2

人们通常把顶角为36°的等腰三角形称为黄金三角形,因为它的 底边和腰长的比值等于黄金分割比√5 1,我们熟悉的五角星就 是由5个黄金三角形和1个正五边形组成的,如图, $\triangle ABC$ 就是 一个黄金三角形,根据以上信息,可得 $sin54^\circ = ($)



A. $\frac{1\sqrt{5}}{4}$

B. $\frac{3\sqrt{5}}{8}$ C. $\frac{4\sqrt{5}}{8}$ D. $\frac{2\sqrt{5}}{4}$

6. 2021年5月11日,全国第七次人口普查的结果正式公布,截止到2020年,全国人口 总数约为14亿,下列各选项的数字与14亿最接近的是()(参考数据: $e \approx 2.718$, $ln2 \approx 0.7, ln5 \approx 1.6, ln7 \approx 1.9$

A. *e*^{19.11}

B. *e* 20.03

C. *e*21.06

D. *e* 22.11

已知函数 $f(x) = x^2$ 4x, $g(x) = \frac{x^2 - 5}{\sqrt{x^2 - 1}}$, 若对于 $\forall x_1 \in [a, a - 1]$, $\exists x_2 \in [0, 2\sqrt{2}]$, 使得 $f(x_1) \le g(x_2)$,则a的取值范围是()

A. [1,4]

B. $\left[\frac{6 + 5\sqrt{3}}{3}, \frac{3 + 5\sqrt{3}}{3}\right]$

C. $[2 2\sqrt{2}, 1 2\sqrt{2}]$

D. [0,3]

8. 己知函数 $f(x) = a(x \cos x)$ $e^x = a(0,\pi)$ 上恰有两个极值点,则a的取值范围是 ()

A. (0,1)

B. (∞,e^{π}) C. $(0,e^{-\pi})$ D. (e^{π},∞)

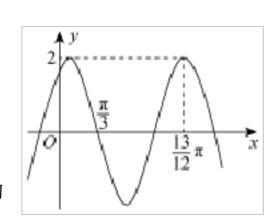
	下列说法正确的有()						
	A. 命题∃ <i>x</i> <	$0, \ x^2 + x + 1 < 0$)的否定是 $\forall x < 0$, x^2	$+x+1 \ge 0$			
	B. 若复数 z_1 ,	z_2 满足 $ z_1 = z_2 $,则 $z_1^2 = z_2^2$				
	C. 若平面向量	ẫa, ¯b满足 ¯a =	\bar{b} , $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$				
	D. 在 \triangle ABC中,若 $tanAtanB > 1$,则 \triangle ABC为锐角三角形						
10.	己知等差数列	$\{a_n^{}\}$ 的前 n 项和为 S	S_n ,且满足 $a_{2022} > 0$,	$a_{2021} + a_{2022} < 0$,则()			
	A. 数列 $\{a_n\}$ 是	是递增数列	B. 数列 $\{S_n\}$	是递增数列			
	$C. S_n$ 的最小值	直是S ₂₀₂₁	D. 使得 S_n 取	以得最小正数的 $n=4042$			
11.	著名数学家欧	拉提出了如下定理	2:三角形的外心、重心、	、垂心依次位于同一直线上,			
	且重心到外心的距离是重心到垂心距离的一半,此直线被称为三角形的欧拉线,该						
	定理被称为欧	拉线定理. 已知△	ABC的外心为O,重心	为 G ,垂心为 H , M 为 BC 中			
	点,且AB = 4	4, AC = 2, 则下列	列各式正确的有()				
	A. $\overline{AG} \cdot \overline{BC} =$	4	B. $\overline{AO} \cdot \overline{BC} =$	= -6			
	C. $\overline{OH} = \overline{OA}$	$+ \overline{OB} + \overline{OC}$	D. $\overline{AB} + \overline{AC}$	$= 4 \overline{OM} + 2 \overline{HM}$			
12.	已知定义在 R_{-}	上的函数 $f(x)$ 图像.	连续,满足 $f(x) - f(-x)$	$x)=6sinx-2x, \exists x>0 \forall t,$			
	$f'(x) < 3\cos x$	-1恒成立,则不等	等式 $f(x) \ge f(x - \frac{\pi}{3})$ —	$\frac{\pi}{3} + 3sin(x + \frac{\pi}{3})$ 中的 x 可以是			
	()		J .				
	A. $-\frac{\pi}{6}$	B. 0	C. $\frac{\pi}{6}$	D. $\frac{\pi}{3}$			
		题共4小题,共2		3			
		•		云 云 云 云 致 列 ; ② 递 减 数 列 ; ③ 每			
13.		,则 $a_n = $	(u_n)				
14		16	函数,满足 $f(x+2)=\frac{1}{2}$	$-f(x), \stackrel{\text{def}}{=} x \in [-1,0], f(x) =$			
11.		$2021) = _{_{_{_{_{_{_{_{1}}}}}}}}.$					
		,	$+\pi(\alpha > 0) \pm \alpha < \alpha$	一、小丛大久久担土传上,则。			
15.	□知函数 ∫(x)	$= 4\cos\omega x \sin(\omega x)$	$+\frac{\pi}{6}$ $(\omega > 0) \oplus x \in (0,2)$	π)上恰有2个极大值点,则 ω			
	的取值范围是	·					
16.	已知正数 x , y	满足 $xy^2(x+6y)$	=1,当 $x=$ 时,	x + 3y取得最小值,最小值			

二、多选题(本大题共4小题,共20.0分)

- 17. 已知数列 $\{a_n\}$ 满足 $a_3 = \frac{1}{6}$, $a_{n-1} = \frac{a_n}{2a_{n-1}}$.
 - (1)求证:数列 $\{\frac{1}{a_n}\}$ 是等差数列,并求数列 $\{a_n\}$ 的通项公式;
 - (2)若____,求数列 $\{b_n\}$ 的前n项和 T_n .

 $(在①<math>b_n = a_n a_{n-1}$; ② $b_n = \frac{(-1)^n}{a_n}$; ③ $b_n = \frac{1}{a_n}$ ($\frac{1}{3}$) $\frac{1}{a_n}$ 三个条件中选择一个补充在第(2)问中,并对其求解)

18. 已知函数 $f(x) = Asin(\omega x \quad \varphi)(A > 0, \omega > 0, 0 \le \varphi \le \pi)$ 的图像如图所示.



- (1)求函数f(x)的解析式;
- (2)将函数f(x)的图像上每一点的横坐标缩短为原来的
- $\frac{1}{8}$,再向右平移工个单位,再向上平移1个单位,得到函数g(x)的图像,求函数g(x)图像的对称轴方程和对称中心坐标.

- 19. 已知 \triangle *ABC*的内角A, *B*, *C*的对边分别为a, b, c, 且三条边的长度a, b, c是三个连续的正整数(a < b < c).
 - (1)若 $\triangle ABC$ 是直角三角形,且 $\triangle ACB$ 的平分线交 $\triangle AB$ 于点 $\triangle D$,求 $\triangle CD$ 的长;
 - (2) 若△ABC 是钝角三角形,求△ABC的面积.

- 20. 已知正项等比数列 $\{a_n\}$ 的前n项和为 S_n ,满足 $a_1=1$, $S_{n-2}-2S_{n-1}=S_n-2S_{n-1}$
 - (1)求 $\{a_n\}$ 的通项公式;
 - (2)求数列 $\{\frac{2n-1}{a_n}\}$ 前n项和 T_n ;
 - (3)在(2)的条件下,若 $\forall n \in \mathbb{N}$, $T_n \geq 10(1-\frac{1}{a_n})-\lambda$, 求 λ 的最小值.

- 21. 已知函数 $f(x) = (x^2 2x)e^x$ $2ex e^2 lnx$.
 - (1)求f(x)在点(1,f(1))处的切线方程;
 - (2)求证: f(x) > 0.

- 22. 已知函数 $f(x) = \frac{2}{3}x^3 (2a \quad 1)x^2 \quad 4ax \quad \frac{16}{3}a^2$.
 - (1)讨论f(x)的单调性;
 - (2)若f(x)只有1个零点 x_0 ,且 x_0 < 0,求a的取值范围;
 - (3)当 $a = -\frac{1}{4}$ 时,是否存在正整数k,使得关于x的方程|f(sinx) f(cosx)| = k有

解?如果存在,求出k的值;如果不存在,说明理由.

答案和解析

1.【答案】*C*

【解析】解: :集合
$$A = \{x | \frac{x-2}{x} \le 0\} = \{x | 0 < x \le 2\},$$

集合
$$B = \{x | e^x \ 1 > 1\} = \{x | x > 1\},$$

$$\therefore \mathsf{C}_{_{\!R}}B = \{x | x \leq 1\},$$

$$A \cap (C_R B) = \{x | 0 < x \le 1\} = (0,1].$$

故选: C.

求出集合A,集合B,从而求出 C_RB ,由此能求出 $A \cap (C_RB)$.

本题考查集合的运算,考查并集、补集定义、不等式性质等基础知识,考查运算求解能力,是基础题.

2.【答案】*A*

【解析】解:由题意可得lna > lnb等价于a > b > 0,即有 $\frac{a}{b} > 1$ 成立,

而由 $\frac{a}{b} > 1$ 不一定可推得lna > lnb,如a = 2 b = 1,lna,lnb没有意义,

所以"lna > lnb"是" $\frac{a}{b} > 1$ "的充分不必要条件,

故选: A.

由题意可得lna > lnb等价于a > b > 0,反之可以举例说明不成立,即可判断出结论. 本题考查了对数函数的单调性、简易逻辑的判定方法,考查了推理能力了与计算能力,属于基础题.

3. 【答案】*C*

【解析】解:
$$\frac{1}{1}$$
 $=$ i $\frac{1}{1}$ $=$ i ,

 $\therefore z$ 的共轭复数z = 1 i,

故选: C.

利用复数的四则运算先化简 $\frac{1-i}{1-i}$,再代入复数z中,利用 $i^2 = 1$ 化简复数z,从而求出z的共轭复数z.

本题主要考查了复数的四则运算,考查了共轭复数的概念,是基础题.

4. 【答案】*B*

【解析】解:根据题意,向量 $\bar{a}=(1,2),\ \bar{b}=(0,2),\ \bar{c}=(2,1),$

则 \bar{a} $\lambda \bar{b} = (1,2 2\lambda),$

若 $(\bar{a}$ $\lambda \bar{b})//\bar{c}$,则有2(2 2λ) = 1,

解可得: $\lambda = \frac{3}{4}$,

故选: B.

根据题意,求出 \bar{a} $\lambda \bar{b}$ 的坐标,进而可得2(2 2λ) = 1,解可得答案.

本题考查向量平行的坐标表示,涉及向量的坐标,属于基础题.

5.【答案】A

【解析】解: 由 $\frac{BC}{AC} = \frac{\sqrt{5}}{2}$. $\triangle ABC$ 为等腰三角形且顶角36°,

所以 $sin18^{\circ} = \frac{\sqrt{5}}{4}$, $sin54^{\circ} = cos36^{\circ} = 1$ $2sin^218^{\circ} = \frac{\sqrt{5}}{4}$,

故选: A.

由顶角是36°的等腰三角形底边与腰的比值可得18°的正弦值,再由诱导公式可得sin54°=cos36°,再由二倍角公式,求出54°的正弦值.

本题考查黄金三角形的性质的应用及诱导公式和二倍角公式的应用,属于基础题.

6.【答案】*C*

 $\ln(29 \times 7 \times 58) = \ln 29$ $\ln 7$ $\ln 58 = 9 \ln 2$ $\ln 7$ $8 \ln 5 \approx 9 \times 0.7$ 1.9 $8 \times 1.6 = 21$.

故选: C.

根据已知条件,结合对数函数的公式,即可求解.

本题主要考查函数的实际应用,掌握对数函数公式是解本题的关键,属于基础题.

7.【答案】*A*

【解析】解:
$$g(x) = \frac{x^2 - 5}{\sqrt{x^2 - 1}} = \sqrt{x^2 - 1}$$
 $\frac{4}{\sqrt{x^2 - 1}}$, $x \in [0, 2\sqrt{2}]$,

令 $t=\sqrt{x^2}$ 1,则 $t\in[1,3]$,

则
$$h(t) = t \frac{4}{t}, t \in [1,3],$$

因为h(t)在[1,2]上单调递减,在[2,3]上单调递增,

所以
$$h(t)_{min} = h(2) = 4$$
,又 $h(1) = 5$, $h(3) = \frac{13}{3}$,

所以 $h(t)_{max} = 5$,

所以
$$g(x)_{min} = 4$$
, $g(x)_{max} = 5$,

因为对于 $\forall x_1 \in [a,a \quad 1], \exists x_2 \in [0,2\sqrt{2}],$ 使得 $f(x_1) \leq g(x_2),$

所以
$$f(x)_{min} \le g(x)_{min} = 4$$
, $f(x)_{max} \le g(x)_{max} = 5$,

函数 $f(x) = x^2 - 4x$, $x \in [a, a \ 1]$, 图象开口向上,对称轴x = 2,

当
$$a$$
 $1 \le 2$,即 $a \le 1$ 时,则 $f(x)_{min} = f(a \quad 1) = (a \quad 1)^2 - 4(a \quad 1) \le 4$,解得 $-1 \le f(x)_{max} = f(a) = a^2 - 4a \le 5$

 $a \leq 1$;

当
$$a \ge 2$$
时,则 $f(x)_{max} = f(a \quad 1) = (a \quad 1)^2 - 4(a \quad 1) \le 5$,解得 $2 \le a \le 4$;

当1 < a < 1.5时,则
$$f(x)_{min} = f(2) = 22 - 4 \times 2 \le 4$$
, $f(x)_{max} = f(a) = a^2 - 4a \le 5$,解得1 < a < 1.5;

当1.5
$$\leq a < 2$$
时,则 $f(x)_{max} = f(a \quad 1) = (a \quad 1)^2 - 4(a \quad 1) \leq 5$,解得1.5 $\leq a < 2$.

综上可得,a的取值范围是[-1,4].

故选: A.

求出g(x)的最值,由题意可得 $f(x)_{min} \le g(x)_{min}$, $f(x)_{max} \le g(x)_{max}$,由二次函数的图象与性质,对a分类讨论,求出f(x)的最值,列不等式组,即可求解a的取值范围.

本题主要考查函数恒成立问题,考查分类讨论思想与转化思想的运用,考查运算求解能力,属于中档题.

8. 【答案】*D*

【解析】解: 因为 $f(x) = a(x \cos x) - e^x$,

所以 $f'(x) = a - asinx - e^x$,

因为函数f(x) = a(x + cosx) $e^x \in (0,\pi)$ 上恰有两个极值点,所以g(x) = a有两个零点,

所以函数g(x)在 $(0,\frac{\pi}{2})$ 上单调递增,在 $(\frac{\pi}{2},\pi)$ 上单调递减,

由于g(0)=1, $g(\pi)=e^{\pi}$,

画出函数g(x)的大致图

像,如图所示,

因为g(x) = a有两个零

点,

所以函数y = g(x)与 y = a的图像有两个交点,

根据函数g(x)的图像,

由数形结合法可得a >

 e^{π} ,

即 $a ∈ (e^{\pi}, +\infty)$,

故选: D.

y=a 0 $\frac{\pi}{2}$

根据题意,求出函数f(x)的导数,令f'(x)=0可得 $a=\frac{e^x}{1\ sinx}(x\neq 2k\pi+\frac{\pi}{2},k\in Z)$,,

再令 $g(x) = \frac{e^x}{1 \ sinx} (x \neq 2k\pi + \frac{\pi}{2}, k \in Z)$,原问题可以转化为g(x) = a有两个零点,求出g(x)的导数,分析g(x)的单调性,画出函数g(x)的大致图像,再利用数形结合法即可求出a的取值范围.

本题考查导数与极值问题,考查转化与化归、函数与方程的数学思想以及运算求解能力和推理论证能力,是中档题.

9. 【答案】 ACD

【解析】解:对于A:命题 $\exists x < 0$, $x^2 + x + 1 < 0$ 的否定是 $\forall x < 0$, $x^2 + x + 1 \ge 0$, 故 A 正确;

对于B: 若复数 z_1 , = a + bi, $z_2 = c + di(a \setminus b \setminus c \setminus d \in R)$ 满足 $|z_1| = |z_2|$, 则 $a^2 + b^2 = c^2 + d^2$,则 $z_1^2 = a^2 + b^2 + 2abi$, $z_2^2 = c^2 + d^2 + 2cdi$,故 $z_1^2 \neq z_2^2$,故 B错误;

对于C: 平面向量 \bar{a} , \bar{b} 满足 $|\bar{a}| = |\bar{b}|$, 则 $\bar{a}^2 = \bar{b}^2$, 故 C 正确;

对于D: 在 \triangle ABC中,若tanAtanB > 1,整理得: $\frac{sinAsinB}{cosAcosB} - 1 > 0$,

化简为 $\frac{sin A sin B - cos A cos B}{cos A cos B} > 0$,整理得 $\frac{cos(A+B)}{cos A cos B} < 0$,

即 $\frac{cosC}{cosAcosB} > 0$,则 $\triangle ABC$ 为锐角三角形,故D正确.

故选: ACD.

直接利用命题的否定,复数的运算,向量的模,三角函数的关系式的变换,三角形形状的判定的应用判断A、B、C、D的结论.

本题考查的知识要点:命题的否定,复数的运算,向量的模,三角函数的关系式的变换,三角形形状的判定,主要考查学生的运算能力和数学思维能力,属于中档题.

10.【答案】AC

【解析】解:等差数列 $\{a_n\}$ 的前n项和为 S_n ,且满足 $a_{2022}>0$, $a_{2021}+a_{2022}<0$,对于A,由题意 $a_{2022}>0$, $a_{2021}<0$,即公差d>0,所以数列 $\{a_n\}$ 是递增数列,故 A正确;

对于B, 由题意 $a_{2022} > 0$, $a_{2021} < 0$, 所以数列 $\{S_n\}$ 是先减后增数列, 故B错误;

对于C, 由题意 $a_{2022} > 0$, $a_{2021} < 0$, 所以 S_n 的最小值是 S_{2021} , 故 C 正确;

对于D,由 $S_{4043} = \frac{1}{2}(a_1 + a_{4043}) \times 4043 = 4043 a_{2022} > 0$, $S_{4042} = \frac{1}{2}(a_1 + a_{4042}) \times 4042 = 2021(a_{2021} + a_{2022}) < 0$,

使得 S_n 取得最小正数的n = 4043,故 D错误.

故选: AC.

由等差数列的定义可判断公差大于0,可判断A;结合数列的项的符号,可判断B、C;由等差数列的求和公式和性质,可判断D.

本题考查等差数列的通项公式、求和公式的运用和性质,考查转化思想和运算能力,属

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问: https://d.book118.com/12703003112
5006034