工业机器人实训室建设资料

三菱工业机器人概述

报告人: 孟庆波

资料整理:

时间: 2013年7月15日

主要内容

MELFA-BASIC V的概述 机器人的动作控制 Pallet运算 机器人程序控制 外部信号的输入 机器人与外部机器之间的通信 6 附随句及运算

1.1机器人的动作控制

	内容	相关指令等	
(1)	关节插补动作	Mov	à
(2)	直线插补动作	Mvs	
(3)	圆弧插补动作	Mvr, Mvr2, Mvr3, Mvc	
(4)	连续动作	Cnt	
(5)	加减速时间和速度控制	Accel, Oadl	
(6)	往目的位置的到达确认	Fine、Mov和Dly	
(7)	高轨迹精度控制	Prec	3
(8)	抓手·TOOL控制	HOpen, HClose, Tool	

❖ 1.2 程序控制

GoTo、If Then Else、Wait另外
For Next, While Wend
Def Act、Act
GoSub、Callp、On GoSub另外
Dly
End(1 循环停止)HIt

- 1.3 Pallet 运算
- ❖ Def Plt、Plt

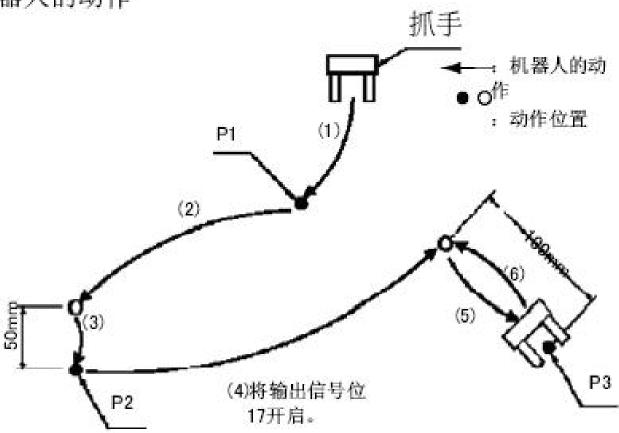
- 1.4 通信
- Open、Close
- ❖ Print、Input

- 1.5 外部信号的输入
 - ❖ M_In、 M_Inb、 M_Inw
 - ❖ M_Out、 M_Outb、 M_Outw

- 1.6 附随句
 - Wth
 - WthIf

❖1.7 运算

(1)	运算符一覧	+、-、*、/、<>、<等
(2)	位置数据的相对运算(乘算)	P1 * P2
(3)	位置数据的相对运算(加算)	P1 + P2


❖ 关节插补动作: 以各个关节轴为单位插补移动到 指定的位置

指令语	说明
Mov	用关节插补往指定位置移动。在Type无法指定插补形式。 而且,可以指定Wth、WthIf的附随句。

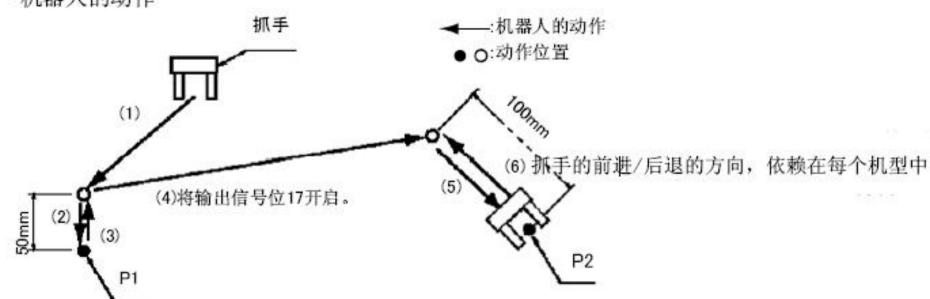
· 程序的例子

	程序	说明
1	Mov P1	'(1)往P1移动。
2	Mov P2, -50 (注)	'(2)往从P2开始,在方向后退50mm的位置移动。
3	Mov P2	'(3)往P2移动。
4	Mov P3, -100 Wth M_Out(17)=1	'(4)开始往从P3开始,在抓手后退100mm的位置移动,同时将输出信号 17开启。
5	Mov P3	'(5)往P3移动。
6	Mov P3, -100 (注)	'(6)返回到从P3到在抓手方向后退100mm位置。
7	End	'程序结束。

- ■程序例
- · 机器人的动作

❖直线插补动作:将抓手尖端以直线插补移动到指 定的位置

■指令

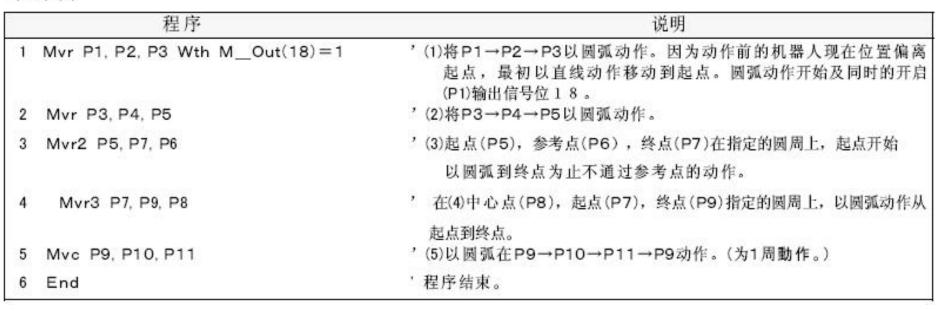

指令	说 明	
M v s	以直线插补往指定位置移动。可以在Type指定插补形式。 可以指定Wth、Wth If 的附随句。	

· 程序例 —

程序		说明	
1	Mvs P1, -50 (注)	'(1)以直线插补从P1移动在抓手方向后退50mm位置。	
2	Mvs P1	'(2)以直线插补往 P 1 移动。	
3	Mvs , -50 (注)	'(3)以直线插补从现在位置(P1)移动在抓手方向后退50mm位置。	
4	Mvs P2, -100 Wth M Out(17)=1 (注)	'(4)开始移动的同时,开启输出信号位17。	
5	Mvs P2	'(5)以直线插补往 P 2 移动。	
6	Mvs , -100 (注)	'(6)以直线插补移动到从P2到往抓手方向后退100mm位置。	
7	End	,程序结束。	

■程序例

·机器人的动作


❖圆弧插补动作:以三次元圆弧插补,在**3**点指定的圆弧上移动

■指令

指令	说明
M vr	指定起点、通过点、终点后,以圆弧插补依照起点→通过点→终点的顺序移动。可在Type指定插补形式。可指定Wth、Wth If 的附随句。
M vr 2	指定起点、终点、参考点后,以圆弧插补从起点→终点,不通过参考点的方式移动。 可在Type指定插补形式。可指定Wth、Wth If 的附随句。
M vr 3	指定起点、终点、中心点后,以圆弧插补从起点→终点移动。从起点到终点的 扇角为 0 度<扇角< 180 度。 可在Type指定插补形式。可指定Wth、Wth If 的附随句。
M vc	指定起点(终点)、通过点 1 、通过点 2 后,以圆弧插补在起点→通过点 1 →通过点 2 →终点的顺序做圆周移动。可指定Wth、Wth If 的附随句。

······(4)

·程序例

■程序例

· 机器人的动作 抓手 机器人的动作 示教位置 P4 P11 P6 (5) P1 (参考点) P10 P5 (1)P9 将输出信 号位18 为 ON. P3 P7 (中心点)

Mva (Move Arch)

从现在位置以弧形运动动作(弧形插补)移动到目的位置。

MVa <移动目的位置>[, <弧形号码>]

【用语】

- <移动目的位置>插补动作最终位置。以位置型变量和常数或关节变量记述。
- <弧形号码> Def Arch (1 \sim 4)。省略时为1。

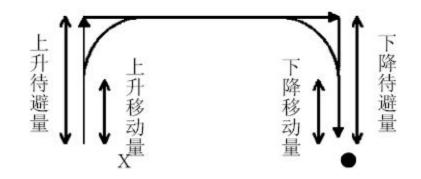
```
Def Arch□<弧形号码> , [<上升移动量>], [<下降移动量>] , [<上升待避量>], [<下降待避量>], [<插补形式>] , [<插补种类 1 > , <插补种类 2 >]
```

<弧形号码> Arch 运动动作模式的号码。将1~4为止的号码以常数或变量设定。

<上升移动量>

<下降移动量> 如右图可以 常数或变量指定

<上升待避量>


<下降待避量>

<插补形式> 上升及下降的动作补插补式

直线 /关节 = 1 / 0

<补插补类 1 > 绕远 / 走进路= 1 / 0

<补插补类 2 > 3 轴直交 /等量旋转= 1 / 0

❖ 【例子】

1 Def Arch 1,5,5,20,20

2 Ovrd 100,20,20

3 Accel 100,100,50,50,50,50°设定加减速比例

4 Mov PO

5 Mva P1,1

作。

6 Mva P2,2

`定义弧形形状

`指定速度比例

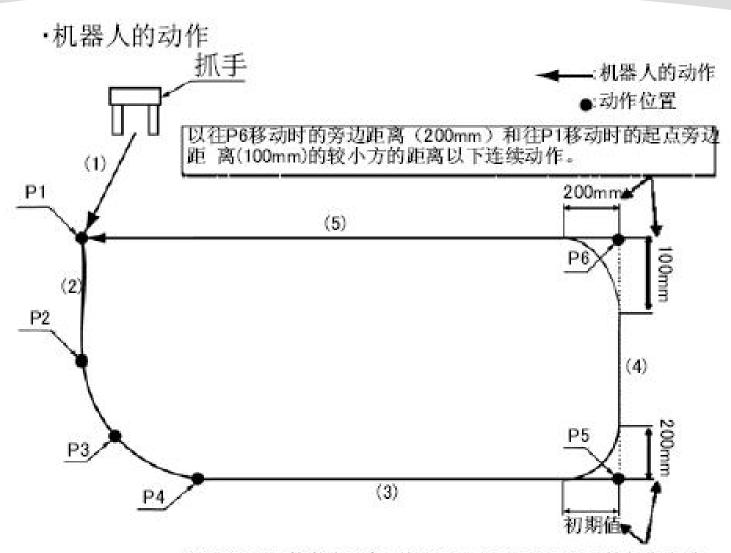
`往弧形运动动作的开始位置移动。

`以步号1已定义的形状执行弧形运动动

"以参数的初始值动作。

❖连续动作:每个动作位置不停止,连续移动多个 动作位置

■指令

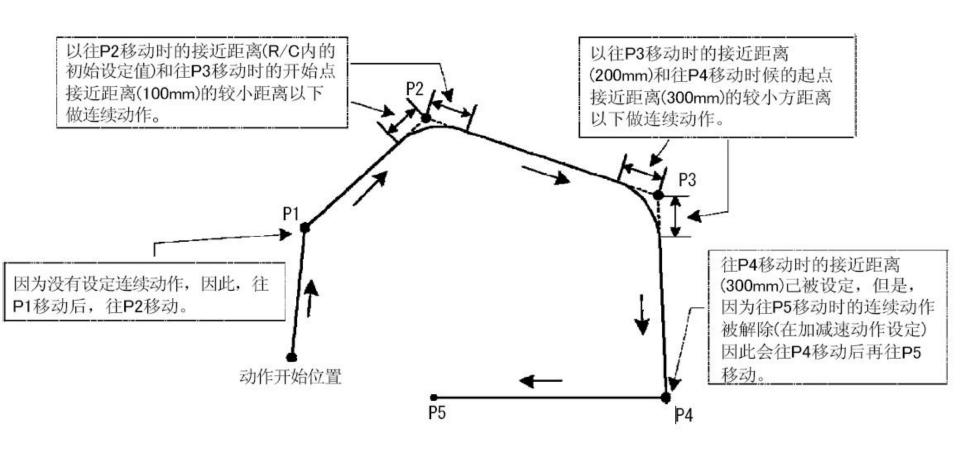

指令	说明
Cnt	指定连续动作的开始和结束。

■例子

例子	说明
Cnt 1	'指定连续动作的开始。起点旁边距离为减速开始位置、终点旁边开始位置为加速结束 位置(视机型会有所差异)。
Cnt 1, 100, 200	'连续动作的开始指定和指定它的起点旁边距离=100mm、终点旁边距离=200mm。 '指定连续动作的结束 1。

·程序例

程序		说 明	
1	Mov P1	'(1)以关节插补往 P 1 移动。	
2	Cnt 1	'使连续动作有效。(此后的移动会变成连续动作)	
3	Mvr P2, P3, P4	'(2)直线动作到P2为止且连续做圆弧动作到P4为止。	
4	Mvs P5	'连续圆弧动作,往P5直线动作。	
5	Cnt 1, 200, 100	'(3)在连续动作的起点旁边距离设定为200mm,终点旁边距离设定为100mm。	
6	Mvs P6	'(4)在前面往 P 5 的移动连续,以直线动作往 P 6。	
7	Mvs P1	'(5)连续,以直线动作往P1。	
8	Cnt 0	' 使连续动作无效。	
9	End	'程序结束。	


往P5移动时的旁边距离(初期值)和往P6移动时的起点旁边距离(200mm)的较小方的距离以下连续动作。

【例文】指定轨迹变换时的最大接近距离的情况

- 1 Cnt 0
- **2 Mvs P1**
- 3 Cnt 1
- 4 Mvs P2
- 5 Cnt 1,100,200
- 6 Mvs P3
- 7 Cnt 1,300
- **8 Mov P4**
- 9 Cnt 0
- **10 Mov P5**

- `将Cnt (连续动作)设定为无效
- `有加减速的执行动作
- '将CNT(连续动作)设定为有效
- `(此行以后的插补为连续动作)
- `和下一个插补的连续为连续动作
- `指定在开始侧100mm、结束侧200mm连续动作
- `用指定距离在插补的前后连续动作
- 、指定在开始侧300mm、
- `结束侧300mm做连续动作
- `在开始侧以300mm连续动作
- `将Cnt(连续动作)设定为无效
- '有加减速的执行动作

❖ 连续轨迹动作的例子

❖加减速时间和速度控制:对加减速最高速度的比例及动作速度

■指令

指令	说明	
Accel	将移动速度时的加、减速度,以对最高速度的比例(%)指定。	
Ovrd	将在程序全体的动作速度,以对最高速度的比例(%)指定。	
J Ovrd	将关节插补动作时的速度,以对最高速度的比例(%)指定。	
Spd	将直线、圆弧插补动作时的速度、以抓手尖端速度(mm/s)指定。	
Oadl	指定最佳加减速度功能为有效/无效。	

■例子

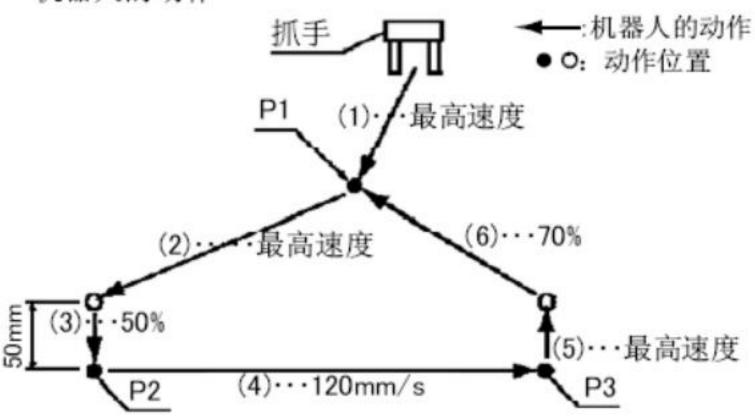
例子	说明
Accel	加减速全部以100%设定。
Accel 60, 80	 加速度以 6 0 %、减速度为 8 0 %设定。 (最高加减速时间为 0.2秒的情况 加速时间 0.2 ÷ 0.6=0.33、 减速时间 0.2 ÷ 0.8=0.25 秒。)
Ovrd 50	'关节插补、直线插补、圆弧插补动作都以最高速度的50%设定。
JOvrd 70	, 将关节插补动作设定为最高速度的 7 0 %。
Spd 30	,将直线插补、圆弧插补动作时的速度设定为30mm/s。
Oadl ON	使最佳加减速功能为有效。

Accel

指定机器人动作时的加速度及减速度的比例(%)。在最佳加减速度时也有效。

Accel [<加速度比例(%)>],[<减速度比例(%)>],[<Mva指令上升时加速度比例(%)>], [<Mva指令上升时减速度比例(%)>], [<Mva指令下降时加速度比例(%)>], [<Mva指令下降时减速度比例(%)>]

【例文】


- 2 Mov P1
- 3 Accel 100,100 \high hi定标准负载
- **4** Mov P2
- 5 Def Arch1,10,10,25,25,1,0,0
- 6 Accel 100,100,20,20,20,20
 - `Mva命指令动作时的上升、下降时的速度比例设为20。

2 Mva P3,1

·程序例

	程序		说明
1	Ovrd 100	,	将全体相关的动作速度设定为最大。
2	Mvs P1	,	(1)以最高速度往P1 移动。
3	Mvs P2, -50(注)	,	(2)以最高速度移动到从P2开始往抓手方向后退50mm的位置。
4	Ovrd 50	,	将全体相关的动作速度设定为最高速度的一半。
5	Mvs P2	,	(3)以初期设定速度的一半,用直线动作到P 2。
6	Spd 120	,	将尖端速度设定为120mm/s。(因为 速度比例 50%,但实际以60mm/s动作。)
7	Ovrd 100	,	为了使实际的尖端速度为120mm/s,请将动作速度的比例设为100%。
8	Accel 70, 70	,	加减速度也设定为最高加减速度的70%。
9	Mvs P3	,	(4)以尖端速度120mm / s 直线动作到P3。
10	Spd M_NSpd	,	将尖端速度返回到初期值。
11	JOvrd 70	,	将关节插补动作时的速度设定为70%。
12	Accel	,	加减速度返回到最高加减速度。
13	Mvs, -50 (注)	,	(5)以直线动作时的初期设定速度,直线移动到从现在位置(P3)到在抓手方向后退50mm的位置。
14	Mvs P1	,	(6)以最高速度的70%往P1移动。
15	End	•	程序结束。

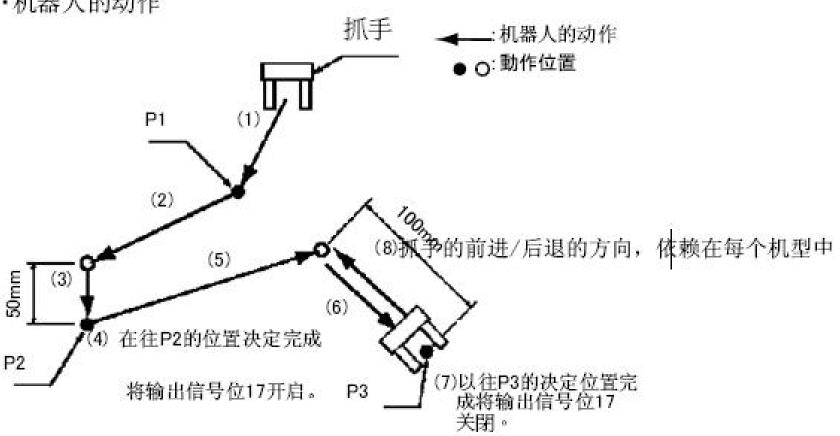
- ■程序例
- · 机器人的动作

❖往目的位置的到达确认:以脉冲数指定决定位置 完成条件(连续动作时,本指定为无效)

■指令

指令	说明
Fine	以脉冲数指定位置决定完成条件。 指定脉冲数越小的话,越可以正确指定位置。
M ov 和 D ly	在Mov的动作指令,以Dly指令(定时器)做位置决定完成。 (在以皮带驱动方式的机器人为有效。 例) RP-1AH/3AH/5AH 等)

■例子


例子		说明
Fine 100	,	将位置决定完成条件设定为100脉冲。
Mov P1	,	以关节插补往P 1 移动。(以指令值标准完成。)
Dly 0.5	,	动作指令后的位置决定以定时器来执行。
	9	(在以皮带驱动方式的机器人为有效。 例) RP-1AH/3AH/5AH 等)

•程序例

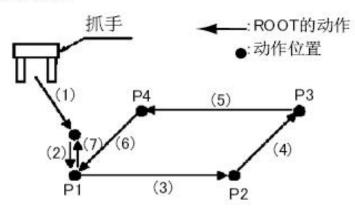
	程序	说 明
1	Cnt 0	' Fine指令只在Cnt指令关闭中有效。
2	Mvs P1	'(1)以关节插补往P1移动。
3	Mvs P2, -50 (注)	'(2)以最高速度移动到从P2开始往抓手方向后退50mm的位置。
4	Fine 50	'将位置决定完成脉冲设定为50。
5	Mvs P2	'(3)以直线插补往P 2 移动。(位置决定完成脉冲在 5 0 以下, Mvs结束)
6	M_Out(17)=1	'(4)位置决定脉冲为50脉冲时,开启输出信号17。
7	Fine 1000	'将位置决定完成脉冲设定为1000。
8	Mvs P3, -100 (注)	'(5)以直线移动到从P3开始往抓手方向后退100mm的位置。
9	Mvs P3	'(6)以直线移动到P3。
10	Dly 0. 1	' 位置决定以定时器执行。
11	M_Out(17)=0	'(7)将输出信号关闭。
12	Mvs , -100 (注)	'(8)以直线移动到从现在位置(P3)开始往抓手方向后退100mm的位置。
13	End	'程序结束。

■程序例

·机器人的动作

❖高精度控制:提高机器人的动作轨迹(多关节6轴机器人RV-SQ/SD系列)

■指令


指令	说明	
Prec	指定高精度模式的有效、无效。	

■例子

例子		说	明	
Prec On	· · · · · · · · · · · · · · · · · · ·	使高精度模式	式为有效。	
Prec Off	, (使高精度模式	式为无效。	

■程序例

·机器人的动作

程序例

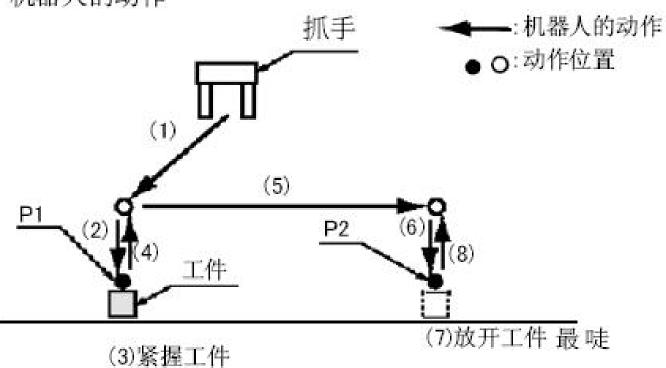
	程序	说明
1	Mov P1, -50 (注)	'(1)以关节插补从P1移动在抓手方向后退50mm位置。
2	Ovrd 50	' 将动作速度设定为最高速度的一半。
3	Mvs P1	'(2)直线往P1移动。
4	Prec On	' 使高轨迹模式为有效。
5	Mvs P2	'(3)从 P1到 P2以高轨迹精度移动。
6	Mvs P3	'(4)从 P2到 P3以高轨迹精度移动。
7	Mvs P4	'(5)从 P3到 P4以高轨迹精度移动。
8	Mvs P1	'(6)从 P4到 P1以高轨迹精度移动。
9	Prec Off	, 使高轨迹模式为无效。
10	Mvs P1, -50	'(7)以直线插补返回到从 P 1 移动在抓手方向后退 5 0 m m 位置。
11	End	,程序结束。

❖抓手TOOL控制:指定抓手的开闭及TOOL的形状

■指令

指令	说 明
Hopen	打开指定抓手。
Hclose	关闭指定抓手。
Tool	设定使用TOOL的形状,并符合控制点。

■例子

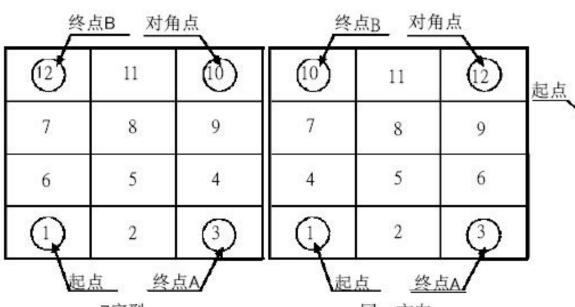

例子	説明
HOpen 1	'打开1号的抓手。
Hopen 2	'打开2号的抓手。
HClose 1	'关闭1号的抓手。
HClose 2	关闭2号的抓手。
Tool (0, 0, 95, 0, 0, 0)	将机器人的控制点的位置设定在从发蓝法兰面的延长方向 9 5 mm 的地方。

·程序例

			说明
1	Tool (0, 0, 95, 0, 0, 0)	,	抓手长设定为95mm
2	Mvs P1, -50 (注)	,	(1) 以关节插补从 P 1 移动在抓手方向后退 5 0 m m 位置。
3	Ovrd 50	,	将动作速度设定为最高速度的一半。
4	Mvs P1	,	(2)直线往P1移动。(去抓取工件)
5	Dly 0. 5	,	为目的位置到达完成,等待0.5秒。
6	HClose 1		(3)关闭抓手 1。(抓住工件)
7	Dly 0. 5	,	等待 O. 5秒。
8	Ovrd 100	,	将动作速度设定为最大。
9	Mvs , -50 (注)	,	(4)以直线动作从现在位置(P1)移动在抓手方向后退50mm位置。 (抓住工件向上)
10	Mvs P2, -50 (注)	,	(5)以关节插补动作从P2移动在抓手方向后退50mm位置。
11	Ovrd 50	,	将动作速度设定为最高速度的一半。
12	Mvs P2	,	(6) 直线往P2移动。(要放置工件)
13	Dly 0. 5	,	为目的位置到达完成,等待0.5秒。
14	HOpen 1	,	(7)打开抓手 1。(放开工件)
15	Dly 0. 5	,	等待 0.5 秒。
16	Ovrd 100	,	将动作速度设定为最大。
17	Mvs , -50 (注)	,	(8) 以直线动作从现在位置(P2)移动在抓手方向后退50mm位置。 (放开工件)
18	End	,	程序结束。

■程序例

·机器人的动作


❖ 将工件规则正确的排列(Palletize)作业及取出作业 (Depalletize)情况下,Pallet功能变为基准,只示教工件的 位置,可用运算求得剩余的位置

■指令

指令	说明
Def Plt	定义使用的Pallet。
PIt	用运算求得Pallet上的指定位置。

■例子

		例子	0)				说明
						= (4 ' 5	义在指定托盘号码1,有起点= P1、终点 A = P2、终点 B = P3、对角点 P4的4点地方和在数量大的中间,个数 A = 4、个数 B = 3的合计12 个 4×3)的作业 位置,用托盘模型= 1(Z字型)进行运算。 它义在托盘号码2,有起点= P1、终点 A = P2、终点B = P3的3点指定 地方在数量大的中间,有个数A = 8、个数B = 5的合计40 个 (5×8) 作业位置,用托盘模型= 2(同一方向)进行运算。
Def Plt 3,	P1, P2	2, P3,	, 5, 1,	3.	 		定义在托盘号码3,在有起点= P1、通过点= P2、终点= P3 的 3点指定圆弧上合计5 个的作业位置,使用圆弧托盘定义。
(Plt 1, 5)					 	, ;	运算托盘号码1的第 5个位置。
(Plt 1, M	1)				 	,	显示数值变量 M 1 的值,运算托盘号码 1 内的位置。

托盘模型 = 1 (Z字型)

(姿势均分)

托盘模型 = 11 (Z字型)

(姿勢固定)

同一方向

托盘模型 = 2 (同一方向)

(姿势均分)

托盘模型 =12 (同一方向)

(姿勢固定)

圆弧托盘

托盘模型 = 3 (圆弧托盘)

(姿势均分)

托盘模型 = 13 (圆弧托盘)

(姿勢固定)

通过点

依据 Pallet 运算(Plt指令)所算出格子点的构造标志(位置数据的 FL1),采用 Pallet 定义的起点的值。

因此,在Pallet定义的各点构造标志的不同位置数据使用的话,会变成和希望的Pallet动作不同的动作。

请使用在Pallet定义的起点、终点A、B对角点里,构造标志值全部相同的位置数据。此外,关于格子点的多回转标志(位置数据的FL2)也是,采用Pallet定义的起点的值。在Pallet的各点多回转标志的不同位置数据使用的话,因Pallet动作的经过,因此机器人的位置及插补指令的种类(关节插补、直线插补等),抓手会回转且产生预期外的动作。那样的情况下,请使用插补指令的自变量Type,适当的将姿势的绕道/近处动作做适当的设定,将抓手调整为希望的动作。

 程序例 1 关于Pallet的全格子点, 抓手的动作相同情况(A,B,C轴的值为相同) 程序 1 P3. A=P2. A 在P3的姿势成份(A)里代入P2的姿势成份(A)。 '在P3的姿势成份(B)里代入P2的姿势成份(B)。 2 P3. B=P2. B 3 P3. C=P2. C '在P3的姿势成份(C)里代入P2的姿势成份(C)。 4 P4. A=P2. A '在P4的姿势成份(A)里代入P2的姿势成份(A)。 '在P4的姿势成份(B)里代入P2的姿势成份(B)。 5 P4 B=P2 B '在P4的姿势成份(C)里代入P2的姿势成份(C)。 6 P4. C=P2. C 7 P5. A=P2. A '在P5的姿势成份(A)里代入P2的姿势成份(A)。 · 在 P5 的姿势成份 (B) 里代入P2 的姿势成份 (B)。 8 P5. B=P2. B '在P5的姿势成份(C)里代入P2的姿势成份(C)。 9 P5. C=P2. C 10 Def Plt 1, P2, P3, P4, P5, 3, 5, 2 ' 定义Pallet。 托盘号码= 1、起点=P2、终点A=P3、终点B=P4、对角点=P5、 个数 A = 3、个数 B = 5、托盘模型 = 2(同一方向) 11 M1=1 ' 在数值变量M1 里代入值1。(M1在计数器使用) '作为跳转对象,将标准LOOP指定。 12 * LOOP 13 Mov P1, -50 (注) 以关节插补动作从P1移动在抓手方向后退50mm位置。 14 Ovrd 50 ' 将动作速度设定为最高速度的一半。 15 Mvs P1 '往P1直线移动。(去抓取工件) 16 HClose 1 关闭抓手 1。(抓住工件) ' 等待 0.5秒。 17 Dly 0. 5 18 Ovrd 100 ' 将动作速度设定为最大。 19 Mvs . -50 (注) '(4)以直线动作从现在位置(P1)移动在抓手方向后退50mm位置。 (抓住工件向上) 20 P10=(Plt 1, M1) '显示数值变量M1的值,运算Pallet号码1内的位置,将结果代入P10 21 Mov P10, -50 (注) 以关节插补动作从P10移动在抓手方向后退50mm位置。 22 Ovrd 50 ' 将动作速度设定为最高速度的一半。 23 Mvs P10 以直线移动到P10。(去放置工件) 24 HOpen 1 打开抓手 1。(放开工件) ' 等待 0.5秒。 25 Dly 0. 5 26 Ovrd 100 ' 将动作速度设定为最大。 27 Mvs , -50 (注) 以直线动作从现在位置(P10)移动在抓手方向后退50mm位置。 (放开工件) 28 M1 = M1 + 1 在数值变量M1的值补足1。(将Pallet计数器前进) 29 If M1<=15 Then *LOOP '数值变量 M 1 的值在 1 5 以下的话, 返复往标准 L O O P 跳转处理。如果

那样的话,往下一行前进。

程序結束。

30

End

将姿势成份(A, B, C)为180度附近的位置数据视为Pallet定义的<起点>、 <终点A, B>、<对角点>的情况下,请确认下列「■说明」内容后实施。

■说明

姿势成份(A,B,C)变成在180度的位置,即使是相同的姿势,成份的值也会变成+180度或 -180度的其中一个。这是因为内部的运算误差所造成,会变成那一个值并没有规则性。

将此位置作为Pallet 定义的<起点>、<终点>、<对角点>的情况下,在同一个姿势成份里有混合了 +180度和 -180,托盘的格子点的位置,为了将 -180度~ +180度之间分割计算出,抓手会回转且会有预期外的动作发生。

因为姿势成份的+180度和-180度变成相同的姿势,因此在Pallet定义使用的位置数据,请使用符号+或符号-的其中一个备齐。

此外,姿势成份在±180度附近(例如: +179度和-179度)的情况下,也会变成有符号混合的现象。此情况下,在姿势成份里加算或减算360度,请备齐符号将值补正。(例如:在-179度补上+的符号的情况下,加上360度为,请补正在+181度。)

在 「 ・程序的例 1 」,在托盘的全格子点,在抓手的方向为相同的情况下,(A,B,C轴的值为相同)、将终点 (P3、P4)和对角点(P5)的姿势成份对准起点(P2)的例子(行号码 1 0 ~ 9 0 号)和在「 ・程序的例 2 」,在Pallet定义位置的姿势成份为± 1 8 0 度附近,终点(P3、P4)和对角点(P5)的C轴的值为比—178度还小,或比+178度还大的情况下,在和起点(P2)相同符号补正值的例子(行号码 1 0 ~100)。

(将±178度列为需补正的值),请在Pallet的精度不良、抓手的方向偏离时,不得不补正情况下的参考。

此外,在托盘模型里指定 11~13的话,在Pallet运算求到的位置变量的姿势会被代入<起点>、也可以固定 抓手的方向。(指定1~3情况下的姿势数据,会被代入<起点>--<终点>之间均分的值)

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问: https://d.book118.com/13705304404
5010001