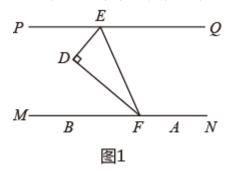
宜宾七年级下册数学期末试卷达标检测卷 (Word 版 含解析)

一、解答题

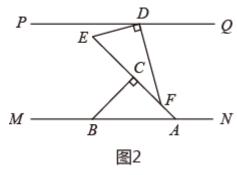
1. 如图, 直线 PQ//MN, 一副直角三角板 ΔABC , ΔDEF 中,

 $\angle ACB = \angle EDF = 90^{\circ}, \angle ABC = \angle BAC = 45^{\circ}, \angle DFE = 30^{\circ}, \angle DEF = 60^{\circ}$.

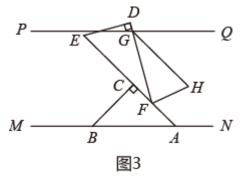
(1) 若 ΔDEF 如图 1 摆放, 当 ED 平分 ∠PEF 时, 证明: FD 平分 ∠EFM.



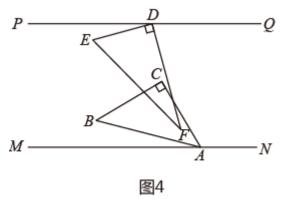
(2) 若 *∆ABC*, *∆DEF* 如图 2 摆放时,则 ∠*PDE* =



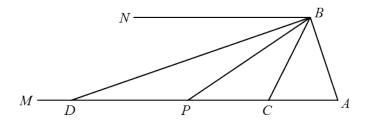
(3) 若图 $2 中 \Delta ABC$ 固定,将 ΔDEF 沿着 AC 方向平移,边 DF 与直线 PQ 相交于点 G ,作 $\angle FGQ$ 和 $\angle GFA$ 的角平分线 GH 、FH 相交于点 H (如图 3),求 $\angle GHF$ 的度数.



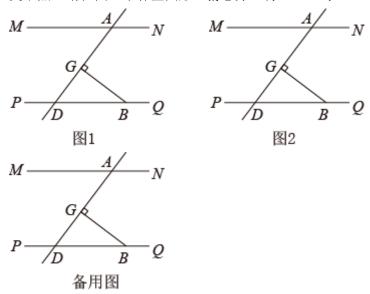
- (4) 若图 2 中 ΔDEF 的周长 35cm, AF = 5cm,现将 ΔABC 固定,将 ΔDEF 沿着 CA 方向平移至点 F 与 A 重合,平移后的得到 $\Delta D'E'A$,点 D、E 的对应点分别是 D'、E',请直接写出四边形 DEAD'的周长.
- (5) 若图 2 中 ΔDEF 固定,(如图 4)将 ΔABC 绕点 A 顺时针旋转,1分钟转半圈,旋转 至 AC 与直线 AN 首次重合的过程中,当线段 BC 与 ΔDEF 的一条边平行时,请直接写出旋转的时间.



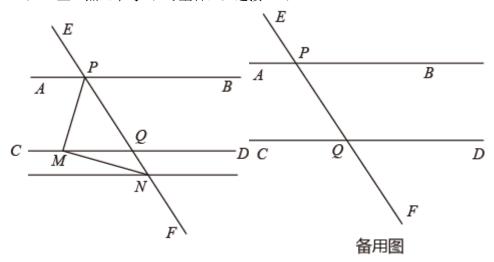
2. 如图,已知 AM // BN ,点 P 是射线 AM 上一动点(与点 A 不重合), BC、BD 分别平 分 $\angle ABP$ 和 $\angle PBN$,分别交射线 AM 于点 C, D .



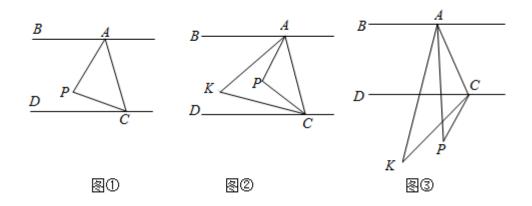
- (1) 当 $\angle A = 60$ °时, $\angle ABN$ 的度数是_____;
- (2) 当 $\angle A = x^{\circ}$, 求 $\angle CBD$ 的度数(用x的代数式表示);
- (3)当点P运动时, $\angle ADB$ 与 $\angle APB$ 的度数之比是否随点P的运动而发生变化?若不变化,请求出这个比值,若变化,请写出变化规律.
- (4) 当点 P 运动到使 $\angle ACB = \angle ABD$ 时,请直接写出 $\angle DBN + \frac{1}{4} \angle A$ 的度数.
- 3. 如图, MN//PQ, 直线 $AD 与 MN \setminus PQ$ 分别交于点 $A \setminus D$, 点 B 在直线 PQ 上, 过点 B 作 $BG \perp AD$, 垂足为点 G.
- (1) 如图 1, 求证: $\angle MAG + \angle PBG = 90^{\circ}$;
- (2) 若点C在线段AD上(不与A、D、G重合),连接BC, $\angle MAG$ 和 $\angle PBC$ 的平分线交于点H请在图 2 中补全图形,猜想并证明 $\angle CBG$ 与 $\angle AHB$ 的数量关系;



4. 已知:如图,直线 AB//CD,直线 EF 交 AB,CD 于 P,Q 两点,点 M,点 N 分别是直线 CD,EF 上一点(不与 P,Q 重合),连接 PM,MN.

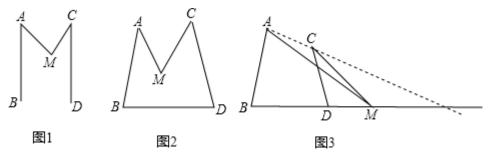


- (1) 点 *M*, *N* 分别在射线 *QC*, *QF* 上 (不与点 *Q* 重合), 当∠*APM*+∠*QMN*=90°时,
- ①试判断 PM 与 MN 的位置关系,并说明理由;
- ②若 PA 平分∠EPM, ∠MNQ=20°, 求∠EPB 的度数. (提示: 过 N 点作 AB 的平行线)
- (2)点 M,N 分别在直线 CD,EF 上时,请你在备用图中画出满足 $PM \perp MN$ 条件的图形,并直接写出此时 $\angle APM$ 与 $\angle QMN$ 的关系. (注:此题说理时不能使用没有学过的定理)5. 直线 $AB \parallel CD$,点 P 为平面内一点,连接 AP,CP.
- (1) 如图①, 点 P 在直线 AB, CD 之间, 当∠BAP=60°, ∠DCP=20°时, 求∠APC 的度数;
- (2)如图②,点 P 在直线 AB,CD 之间, $\angle BAP$ 与 $\angle DCP$ 的角平分线相交于 K,写出 $\angle AKC$ 与 $\angle APC$ 之间的数量关系,并说明理由;
- (3)如图③,点 P 在直线 CD 下方,当 $\angle BAK = \frac{2}{3} \angle BAP$, $\angle DCK = \frac{2}{3} \angle DCP$ 时,写出 $\angle AKC$ 与 $\angle APC$ 之间的数量关系,并说明理由.

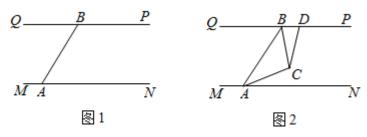


二、解答题

6. 如图 1, 由线段 AB, AM, CM, CD 组成的图形像英文字母 M, 称为" M 形 BAMCD".

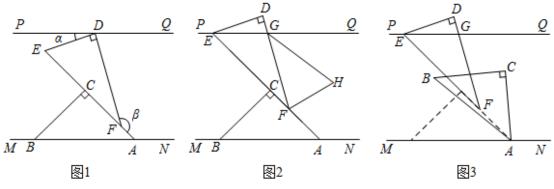


- (1) 如图 1, M 形 BAMCD 中,若 AB//CD, $\angle A + \angle C = 50^{\circ}$,则 $\angle M =$
- (2) 如图 2, 连接 M 形 BAMCD 中 B, D 两点,若 $\angle B + \angle D = 150$ °, $\angle AMC = \alpha$,试探求 $\angle A$ 与 $\angle C$ 的数量关系,并说明理由;
- (3) 如图 3,在(2)的条件下,且AC的延长线与BD的延长线有交点,当点M在线段 BD的延长线上从左向右移动的过程中,直接写出 $\angle A$ 与 $\angle C$ 所有可能的数量关系.
- 7. 为了安全起见在某段铁路两旁安置了两座可旋转探照灯. 如图 1 所示,灯 A 射线从 AM 开始顺时针旋转至 AN 便立即回转,灯 B 射线从 BP 开始顺时针旋转至 BQ 便立即回转,两 灯不停交又照射巡视. 若灯 A 转动的速度是每秒 2 度,灯 B 转动的速度是每秒 1 度. 假定主道路是平行的,即 PQ//MN,且 $\angle BAM: \angle BAN=3:2$.



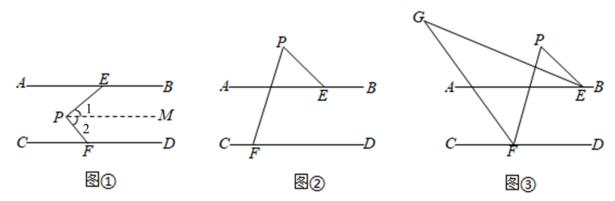
- (1) 填空: ∠BAN = ;
- (2) 若灯B射线先转动 30 秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动几秒,两灯的光束互相平行?
- (3)如图 2,若两灯同时转动,在灯 A 射线到达 AN 之前.若射出的光束交于点C,过 C 作 $\angle ACD$ 交 PQ 于点 D,且 $\angle ACD$ = 126°,则在转动过程中,请探究 $\angle BAC$ 与 $\angle BCD$ 的数量 关系是否发生变化?若不变,请求出其数量关系,若改变,请说明理由.
- 8. 已知 PQ / /MN,将一副三角板中的两块直角三角板如图 1 放置,

 $\angle ACB = \angle EDF = 90^{\circ}$, $\angle ABC = \angle BAC = 45^{\circ}$, $\angle DFE = 30^{\circ}$, $\angle DEF = 60^{\circ}$.



- (1) 若三角板如图 1 摆放时,则 $\angle \alpha = ____, \angle \beta = ____.$
- (2) 现固定VABC 的位置不变,将VDEF 沿 AC 方向平移至点 E 正好落在 PQ

- 上,如图 2 所示,DF 与 PQ交于点 G,作 $\angle FGQ$ 和 $\angle GFA$ 的角平分线交于点 H,求 $\angle GHF$ 的度数;
- (3)现固定VDEF,将VABC绕点 A 顺时针旋转至AC 与直线 AN 首次重合的过程中,当 线段 BC 与VDEF 的一条边平行时,请直接写出 $\angle BAM$ 的度数.
- 9. (感知)如图①,AB//CD, $\angle AEP = 40^{\circ}$, $\angle PFD = 130^{\circ}$,求 $\angle EPF$ 的度数. 小明想到了以下方法:



- 解:如图①,过点P作PM//AB,
- $\therefore \angle 1 = \angle AEP = 40^{\circ}$ (两直线平行,内错角相等)
- QAB//CD (己知),
- :: PM//CD (平行于同一条直线的两直线平行),
- $\therefore \angle 2 + \angle PFD = 180^{\circ}$ (两直线平行,同旁内角互补).
- Q ∠*PFD* = 130°(己知),
- $∴ ∠2 = 180^{\circ} 130^{\circ} = 50^{\circ}$ (等式的性质).
- \therefore ∠1+∠2=40°+50°=90° (等式的性质).
- 即 \(ZEPF = 90° (等量代换).
- (探究)如图②, AB//CD, $\angle AEP = 50^{\circ}$, $\angle PFC = 120^{\circ}$, 求 $\angle EPF$ 的度数.
- (应用)如图(3)所示,在(探究)的条件下, $\angle PEA$ 的平分线和 $\angle PFC$ 的平分线交于点
- G , 则 $\angle G$ 的度数是 。.

10. 问题情境

(1) 如图 1,已知 AB//CD, $\angle PBA = 125^{\circ}$, $\angle PCD = 155^{\circ}$,求 $\angle BPC$ 的度数. 佩佩同学的 思路:过点 P 作 PG//AB,进而 PG//CD,由平行线的性质来求 $\angle BPC$,求得

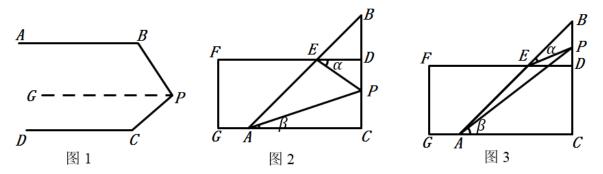
 $\angle BPC = \underline{\hspace{1cm}}.$

问题迁移

- (2) 图 2. 图 3 均是由一块三角板和一把直尺拼成的图形,三角板的两直角边与直尺的两边重合, $\angle ACB = 90^{\circ}$,DF//CG,AB = FD 相交于点 E,有一动点 P 在边 BC 上运动,连接 PE ,PA ,记 $\angle PED = \angle \alpha$, $\angle PAC = \angle \beta$.
- ①如图 2,当点 P 在 C , D 两点之间运动时,请直接写出 $\angle AOE$ 与 $\angle \alpha$, $\angle \beta$ 之间的数量 关系:
- ②如图 3,当点 P 在 B , D 两点之间运动时, $\angle APE$ 与 $\angle \alpha$, $\angle \beta$ 之间有何数量关系?请判断并说明理由;拓展延伸

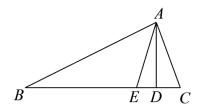
(3) 当点 P 在 C , D 两点之间运动时,若 $\angle PED$, $\angle PAC$ 的角平分线 EN , AN 相交于点

N,请直接写出 $\angle ANE$ 与 $\angle \alpha$, $\angle \beta$ 之间的数量关系.



三、解答题

11. 如图, 在VABC中, AD是高, AE是角平分线, $\angle B = 20^{\circ}$, $\angle C = 60^{\circ}$.



(1) 求∠CAD、∠AEC和∠EAD的度数.

(2) 若图形发生了变化,已知的两个角度数改为: 当 $\angle B = 30^{\circ}$, $\angle C = 60^{\circ}$,则

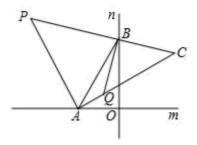
$$\angle EAD = ___$$
°.

当 $\angle B = 50^{\circ}$, $\angle C = 60^{\circ}$ 时,则 $\angle EAD =$ ______°.

当 $\angle B = 60^{\circ}$, $\angle C = 60^{\circ}$ 时,则 $\angle EAD = ____{\circ}$.

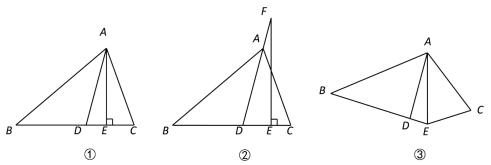
当 $\angle B = 70^{\circ}$, $\angle C = 60^{\circ}$ 时,则 $\angle EAD =$ °.

- (3) 若 ΘB 和 $\angle C$ 的度数改为用字母 α 和 β 来表示,你能找到 $\angle EAD$ 与 α 和 β 之间的关系吗?请直接写出你发现的结论.
- 12. 如图,直线 m 与直线 n 互相垂直,垂足为 O、A、B 两点同时从点 O 出发,点 A 沿直线 m 向左运动,点 B 沿直线 n 向上运动.
- (1)若 \angle BAO 和 \angle ABO 的平分线相交于点 Q,在点 A,B 的运动过程中, \angle AQB 的大小是否会发生变化?若不发生变化,请求出其值,若发生变化,请说明理由.
- (2)若 AP 是 \angle BAO 的邻补角的平分线,BP 是 \angle ABO 的邻补角的平分线,AP、BP 相交于点 P,AQ 的延长线交 PB 的延长线于点 C,在点 A,B 的运动过程中, \angle P 和 \angle C 的大小是否会 发生变化?若不发生变化,请求出 \angle P 和 \angle C 的度数,若发生变化,请说明理由.

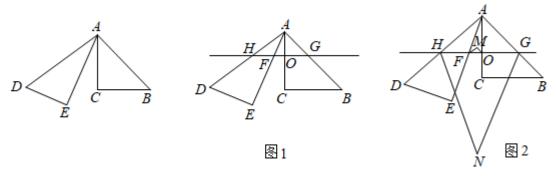


- 13. 如图①, AD 平分 $\angle BAC$, $AE \perp BC$, $\angle B=45^{\circ}$, $\angle C=73^{\circ}$.
- (1) 求 ∠*DAE* 的度数:

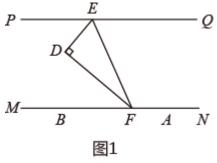
- (2) 如图②,若把" $AE \perp BC$ "变成"点 F 在 DA 的延长线上, $FE \perp BC$ ",其它条件不变,求 $\angle DFE$ 的度数;
- (3) 如图③,若把" $AE \perp BC$ "变成" $AE \ P \cap \angle BEC$ ",其它条件不变, $\angle DAE$ 的大小是否变化,并请说明理由.



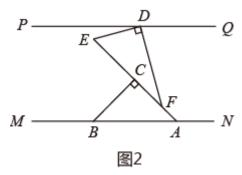
- 14. 如图, ΔABC 和ΔADE 有公共顶点 A, ∠ACB=∠AED=90°, ∠BAC=45°, ∠DAE=30°.
- (1) 若 DE//AB,则∠EAC=____;
- (2) 如图 1, 过 AC 上一点 O 作 OGLAC, 分别交 AB、AD、AE 于点 G、H、F.
- ①若 AO=2, $S_{\triangle AGH}=4$, $S_{\triangle AHF}=1$,求线段 OF 的长;
- ②如图 2, $\angle AFO$ 的平分线和 $\angle AOF$ 的平分线交于点 M, $\angle FHD$ 的平分线和 $\angle OGB$ 的平分线交于点 N, $\angle N+\angle M$ 的度数是否发生变化?若不变,求出其度数,若改变,请说明理由.



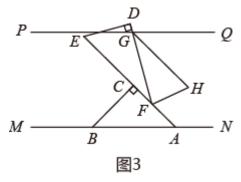
- 15. 如图,直线PQ//MN,一副直角三角板 ΔABC , ΔDEF 中,
- $\angle ACB = \angle EDF = 90^{\circ}, \angle ABC = \angle BAC = 45^{\circ}, \angle DFE = 30^{\circ}, \angle DEF = 60^{\circ}$.
- (1) 若 ΔDEF 如图 1 摆放, 当 ED 平分 $\angle PEF$ 时,证明: FD 平分 $\angle EFM$.



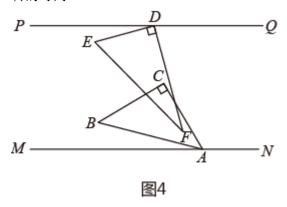
(2) 若 $\triangle ABC$, $\triangle DEF$ 如图 2 摆放时,则 $\angle PDE =$



(3) 若图 2 中 $\triangle ABC$ 固定,将 $\triangle DEF$ 沿着 AC 方向平移,边 DF 与直线 PQ 相交于点 G ,作 $\triangle FGQ$ 和 $\triangle GFA$ 的角平分线 GH 、FH 相交于点 H (如图 3),求 $\triangle GHF$ 的度数.



- (4) 若图 2 中 ΔDEF 的周长 35cm, AF = 5cm,现将 ΔABC 固定,将 ΔDEF 沿着 CA 方向平移至点 F 与 A 重合,平移后的得到 $\Delta D'E'A$,点 D、E 的对应点分别是 D'、E',请直接写出四边形 DEAD'的周长.
- (5) 若图 2 中 ΔDEF 固定,(如图 4)将 ΔABC 绕点 A 顺时针旋转,1分钟转半圈,旋转至 AC 与直线 AN 首次重合的过程中,当线段 BC 与 ΔDEF 的一条边平行时,请直接写出旋转的时间.



【参考答案】

一、解答题

1. (1) 见详解; (2) 15°; (3) 67.5°; (4) 45cm; (5) 10s 或 30s 或 40s

【分析】

- (1) 运用角平分线定义及平行线性质即可证得结论;
- (2) 如图 2, 过点 E 作 EK||MN, 利用平行线性

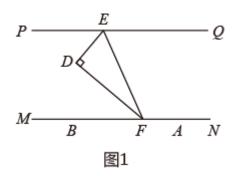
解析: (1) 见详解; (2) 15°; (3) 67.5°; (4) 45cm; (5) 10s 或 30s 或 40s

【分析】

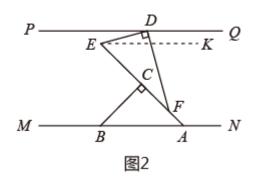
- (1) 运用角平分线定义及平行线性质即可证得结论;
- (2) 如图 2, 过点 E 作 EK||MN, 利用平行线性质即可求得答案;
- (3) 如图 3,分别过点 F、H 作 $FL \parallel MN$, $HR \parallel PQ$,运用平行线性质和角平分线定义即可得出答案;
- (4) 根据平移性质可得 *D'A=DF*, *DD'=EE'=AF*=5cm,再结合 *DE+EF+DF*=35cm,可得出答案:
- (5) 设旋转时间为 t 秒, 由题意旋转速度为 1 分钟转半圈, 即每秒转 3°, 分三种情况:
- ①当 *BC*||*DE* 时,②当 *BC*||*EF* 时,③当 *BC*||*DF* 时,分别求出旋转角度后,列方程求解即可。

【详解】

(1) 如图 1, 在ΔDEF中, ∠EDF=90°, ∠DFE=30°, ∠DEF=60°,



- ::ED 平分∠PEF,
- $\therefore \angle PEF = 2 \angle PED = 2 \angle DEF = 2 \times 60^{\circ} = 120^{\circ}$
- :PQ||MN,
- $\therefore \angle MFE = 180^{\circ} \angle PEF = 180^{\circ} 120^{\circ} = 60^{\circ}$
- $\therefore \angle MFD = \angle MFE \angle DFE = 60^{\circ} 30^{\circ} = 30^{\circ}$
- $\therefore \angle MFD = \angle DFE$,
- ::FD 平分 LEFM;
- (2) 如图 2, 过点 E 作 EK||MN,



- *∵∠BAC*=45°,
- $\therefore \angle KEA = \angle BAC = 45^{\circ}$,
- PQ MN, EK MN,
- ∴PQ||EK,

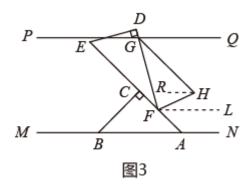
 $\therefore \angle PDE = \angle DEK = \angle DEF - \angle KEA$,

又*∵∠DEF*=60°.

 $\therefore \angle PDE = 60^{\circ} - 45^{\circ} = 15^{\circ}$,

故答案为: 15°;

(3) 如图 3, 分别过点 F、H 作 FL||MN, HR||PQ,



∴∠LFA=∠BAC=45°, ∠RHG=∠QGH,

:FL||MN, HR||PQ, PQ||MN,

 $\therefore FL ||PQ||HR$,

 $\therefore \angle QGF + \angle GFL = 180^{\circ}, \angle RHF = \angle HFL = \angle HFA - \angle LFA,$

:: ∠FGQ 和 ∠GFA 的角平分线 GH、FH 相交于点 H,

$$\therefore \angle QGH = \frac{1}{2} \angle FGQ$$
, $\angle HFA = \frac{1}{2} \angle GFA$,

::∠*DFE*=30°,

 $\therefore \angle GFA = 180^{\circ} - \angle DFE = 150^{\circ}$,

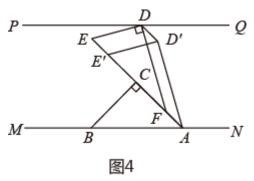
$$\therefore \angle HFA = \frac{1}{2} \angle GFA = 75^{\circ},$$

 $\therefore \angle RHF = \angle HFL = \angle HFA - \angle LFA = 75^{\circ} - 45^{\circ} = 30^{\circ},$

$$\therefore \angle RHG = \angle QGH = \frac{1}{2} \angle FGQ = \frac{1}{2} (180^{\circ} - 105^{\circ}) = 37.5^{\circ},$$

 $\therefore \angle GHF = \angle RHG + \angle RHF = 37.5^{\circ} + 30^{\circ} = 67.5^{\circ};$

(4) 如图 4,: 将 Δ DEF 沿着 CA 方向平移至点 F与 A 重合,平移后的得到 Δ D'E'A,



 $\therefore D'A = DF$, DD' = EE' = AF = 5cm,

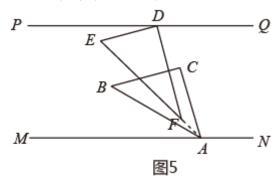
:DE+EF+DF=35cm,

:DE+EF+D'A+AF+DD'=35+10=45 (cm),

即四边形 DEAD'的周长为 45cm;

(5) 设旋转时间为 t 秒,由题意旋转速度为 1 分钟转半圈,即每秒转 3° ,分三种情况:

BC||*DE* 时,如图 5,此时 *AC*||*DF*,

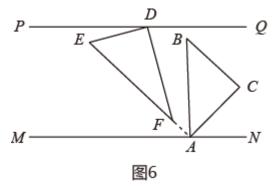


 $\therefore \angle CAE = \angle DFE = 30^{\circ}$,

 $\therefore 3t = 30$,

解得: t=10;

BC||*EF* 时,如图 6,



:BC||EF,

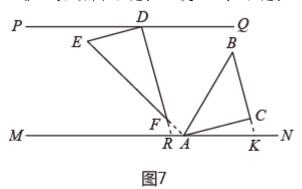
 $\therefore \angle BAE = \angle B = 45^{\circ}$,

 $\therefore \angle BAM = \angle BAE + \angle EAM = 45^{\circ} + 45^{\circ} = 90^{\circ}$,

 $\therefore 3t = 90$,

解得: t=30;

BC||DF时,如图 7,延长 BC 交 MN 于 K,延长 DF 交 MN 于 R,



 $\therefore \angle DRM = \angle EAM + \angle DFE = 45^{\circ} + 30^{\circ} = 75^{\circ}$

∴∠BKA=∠*DRM*=75°,

- $\therefore \angle ACK = 180^{\circ} \angle ACB = 90^{\circ}$
- $\therefore \angle CAK = 90^{\circ} \angle BKA = 15^{\circ}$,
- $\therefore \angle CAE = 180^{\circ} \angle EAM \angle CAK = 180^{\circ} 45^{\circ} 15^{\circ} = 120^{\circ}$
- $\therefore 3t = 120$,

解得: t=40,

综上所述, $\triangle ABC$ 绕点 A 顺时针旋转的时间为 10s 或 30s 或 40s 时,线段 BC 与 $\triangle DEF$ 的一条边平行.

【点睛】

本题主要考查了平行线性质及判定,角平分线定义,平移的性质等,添加辅助线,利用平行线性质是解题关键.

2. (1) 120°; (2) 90°-x°; (3) 不变,; (4) 45°

【分析】

- (1) 由平行线的性质:两直线平行同旁内角互补可得;
- (2) 由平行线的性质可得∠ABN=180°-x°, 根据角平分线的定义知∠

解析: (1) 120°; (2) 90°- $\frac{1}{2}$ x°; (3) 不变, $\frac{1}{2}$; (4) 45°

【分析】

- (1) 由平行线的性质: 两直线平行同旁内角互补可得:
- (2) 由平行线的性质可得∠ABN=180°-x°, 根据角平分线的定义知∠ABP=2∠CBP、

 $\angle PBN=2\angle DBP$,可得 $2\angle CBP+2\angle DBP=180^{\circ}-x^{\circ}$,即 $\angle CBD=\angle CBP+\angle DBP=90^{\circ}-\frac{1}{2}x^{\circ}$;

- (3)由 *AM*||*BN* 得∠*APB*=∠*PBN*、∠*ADB*=∠*DBN*,根据 *BD* 平分∠*PBN* 知∠*PBN*=2∠*DBN*,从而可得∠*APB*: ∠*ADB*=2: 1:
- (4) 由 $AM\parallel BN$ 得 $\angle ACB=\angle CBN$,当 $\angle ACB=\angle ABD$ 时有 $\angle CBN=\angle ABD$,得 $\angle ABC+\angle CBD=\angle CBD+\angle DBN$,即 $\angle ABC=\angle DBN$,根据角平分线的定义可得 $\angle ABP=\angle PBN=\frac{1}{2}$ $\angle ABN=2\angle DBN$,由平行线的性质可得 $\frac{1}{2}$ $\angle A+\frac{1}{2}$ $\angle ABN=90^{\circ}$,即可得出答案.

【详解】

解: (1) :: AM||BN, $\angle A=60^\circ$,

- ∴∠A+∠ABN=180°,
- ∴∠*ABN*=120°:
- (2) *∵AM∥BN*,
- ∴∠*ABN*+∠*A*=180°,
- $\therefore \angle ABN=180^{\circ}-x^{\circ}$,
- $\therefore \angle ABP + \angle PBN = 180^{\circ} x^{\circ}$,
- **∵BC** 平分∠ABP, BD 平分∠PBN,
- $\therefore \angle ABP = 2 \angle CBP$, $\angle PBN = 2 \angle DBP$,
- $\therefore 2 \angle CBP + 2 \angle DBP = 180^{\circ} x^{\circ}$,
- ∴∠CBD=∠CBP+∠DBP= $\frac{1}{2}$ (180°-x°) =90°- $\frac{1}{2}$ x°;

- (3) 不变, $\angle ADB$: $\angle APB = \frac{1}{2}$.
- :AM||BN,
- ∴∠APB=∠PBN, ∠ADB=∠DBN,
- ::BD 平分∠PBN,
- ∴∠PBN=2∠DBN,
- ∴∠*APB*: ∠*ADB*=2: 1,
- $\therefore \angle ADB$: $\angle APB = \frac{1}{2}$;
- $(4) ::AM \parallel BN,$
- $\therefore \angle ACB = \angle CBN$,
- 当∠ACB=∠ABD时,则有∠CBN=∠ABD,
- $\therefore \angle ABC + \angle CBD = \angle CBD + \angle DBN$,
- $\therefore \angle ABC = \angle DBN$,
- *∵BC* 平分∠ABP, BD 平分∠PBN,
- $\therefore \angle ABP = 2 \angle ABC, \angle PBN = 2 \angle DBN,$
- $\therefore \angle ABP = \angle PBN = 2 \angle DBN = \frac{1}{2} \angle ABN$,
- :AM||BN,
- $\therefore \angle A + \angle ABN = 180^{\circ}$,
- $\therefore \frac{1}{2} \angle A + \frac{1}{2} \angle ABN = 90^{\circ},$
- $\therefore \frac{1}{2} \angle A + 2 \angle DBN = 90^{\circ},$
- $\therefore \frac{1}{4} \angle A + \angle DBN = \frac{1}{2} \quad (\frac{1}{2} \angle A + 2 \angle DBN) = 45^{\circ}.$

【点睛】

本题主要考查平行线的性质和角平分线的定义,熟练掌握平行线的性质是解题的关键.

3. (1)证明见解析; (2)补图见解析; 当点在上时,; 当点在上时,.

【分析】

- (1) 过点作,根据平行线的性质即可求解:
- (2) 分两种情况: 当点在上, 当点在上, 再过点作即可求解.

【详解】

(1) 证明:

解析: (1)证明见解析; (2)补图见解析; 当点C在AG上时, $2\angle AHB$ - $\angle CBG$ = 90° ; 当点C在DG上时, $2\angle AHB$ + $\angle CBG$ = 90° .

【分析】

- (1) 过点G作GE//MN,根据平行线的性质即可求解;
- (2) 分两种情况: 当点C在AG上, 当点C在DG上, 再过点H作HF//MN即可求解.

【详解】

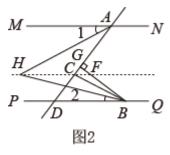
(1) 证明:如图,过点G作GE//MN,

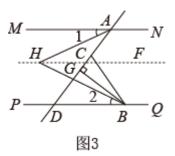
$$M$$
 A
 N
 E
 P
 D
 B
 Q

- $\therefore \angle MAG = \angle AGE,$
- :MN//PQ,
- :: GE//PQ.
- $\therefore \angle PBG = \angle BGE$.
- $:BG \perp AD$,
- $\therefore \angle AGB = 90^{\circ}$,
- $\therefore \angle MAG + \angle PBG = \angle AGE + \angle BGE = \angle AGB = 90^{\circ}$.
- (2) 补全图形如图 2、图 3,

猜想: $2\angle AHB - \angle CBG = 90^{\circ}$ 或 $2\angle AHB + \angle CBG = 90^{\circ}$.

证明: 过点H作HF//MN.





- $\therefore \angle 1 = \angle AHF$.
- :MN//PQ,
- *∴ HF* //*PQ*
- $\therefore \angle 2 = \angle BHF$,
- $\therefore \angle AHB = \angle AHF + \angle BHF = \angle 1 + \angle 2$.
- *∵AH* 平分 ∠MAG,
- $\therefore \angle MAG = 2\angle 1$.

如图 3, 当点 C 在 AG 上时,

- :: BH 平分 ∠PBC,
- $\therefore \angle PBC = \angle PBG + \angle CBG = 2\angle 2$,
- :MN//PQ,
- $\therefore \angle MAG = \angle GDB$,
- $\therefore 2\angle AHB = 2\angle 1 + 2\angle 2 = \angle MAG + \angle PBG + \angle CBG$
- $= \angle GDB + \angle PBG + \angle CBG$
- $=90^{\circ} + \angle CBG$

 $\mathbb{II} 2\angle AHB - \angle CBG = 90^{\circ}$.

如图 2, 当点 $C \times DG$ 上时,

:: BH 平分 ∠PBC,

- $\therefore \angle PBC = \angle PBG \angle CBG = 2\angle 2$.
- $\therefore 2\angle AHB = 2\angle 1 + 2\angle 2 = \angle MAG + \angle PBG \angle CBG = 90^{\circ} \angle CBG$.

【点睛】

本题考查了平行线的基本性质、角平分线的基本性质及角的运算,解题的关键是准确作出 平行线,找出角与角之间的数量关系.

4. (1) ①PM⊥MN,理由见解析;②∠EPB 的度数为 **125°**;(2)∠APM +∠QMN=90°或∠APM -∠QMN=90°.

【分析】

(1) ①利用平行线的性质得到∠APM=∠PMQ,再根据已知条

解析: (1) ①*PM*⊥*MN*,理由见解析; ②∠*EPB* 的度数为 125°; (2) ∠*APM* +∠*QMN*=90° 或∠*APM* -∠*QMN*=90°.

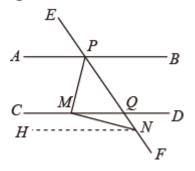
【分析】

- (1) ①利用平行线的性质得到∠APM=∠PMQ,再根据已知条件可得到 PMLMN;
- ②过点 N 作 $NH\parallel CD$,利用角平分线的定义以及平行线的性质求得 $\angle MNH=35^{\circ}$,即可求解;
- (2) 分三种情况讨论,利用平行线的性质即可解决.

【详解】

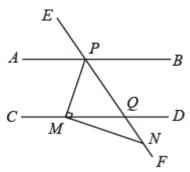
解: (1) ①*PM*L*MN*, 理由见解析:

- AB/CD,
- $\therefore \angle APM = \angle PMQ$,
- ∵∠APM+∠QMN=90°,
- $\therefore \angle PMQ + \angle QMN = 90^{\circ}$
- ∴PM⊥MN;
- ②过点 N 作 NH||CD,



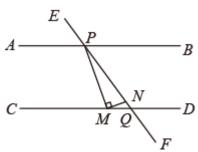
- AB/CD,
- $\therefore AB//NH\|CD$,
- ∴∠QMN=∠MNH, ∠EPA=∠ENH,
- ::PA 平分∠EPM,
- $\therefore \angle EPA = \angle MPA$,
- $\therefore \angle APM + \angle QMN = 90^{\circ}$,
- ∴∠EPA +∠MNH=90°, 即∠ENH +∠MNH=90°,
- $\therefore \angle MNQ + \angle MNH + \angle MNH = 90^{\circ}$,

- *∵∠MNQ*=20°,
- ∴∠*MNH*=35°,
- $\therefore \angle EPA = \angle ENH = \angle MNQ + \angle MNH = 55^{\circ}$,
- ∴∠*EPB*=180°-55°=125°,
- :: ∠EPB 的度数为 125°;
- (2) 当点 *M*, *N* 分别在射线 *QC*, *QF* 上时, 如图:



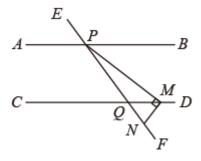
- ::PM⊥MN, AB//CD,
- $\therefore \angle PMQ + \angle QMN = 90^{\circ}, \angle APM = \angle PMQ,$
- ∴∠*APM* +∠*QMN*=90°;

当点M,N分别在射线QC,线段PQ上时,如图:



- ::PM⊥MN, AB//CD,
- ∴∠PMN=90°, ∠APM=∠PMQ,
- $\therefore \angle PMQ \angle QMN = 90^{\circ}$,
- ∴∠*APM* -∠*QMN*=90°;

当点 M, N 分别在射线 QD, QF 上时, 如图:



- ::PM⊥MN, AB//CD,
- $\therefore \angle PMQ + \angle QMN = 90^{\circ}, \ \angle APM + \angle PMQ = 180^{\circ},$
- ∴∠*APM*+90°-∠*QMN*=180°,
- ∴∠*APM* -∠*QMN*=90°;

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问:

https://d.book118.com/147123104150010004