2024-2025 学年重庆市黔江区高二上学期 11 月月考数学 检测试题

一、单项选择题 本大题	共8小题,每小题5分,共	40 分.在每小题给出的四个	·选项中,只有		
一项是符合题目要求的.					
1. 直线 $x - y + m = 0$ 的倾斜角为 ()					
A. $\frac{\pi}{6}$	B. $\frac{\pi}{4}$	C. $\frac{\pi}{3}$	D. $\frac{3\pi}{4}$		
2. 圆 C_1 : $(x-2)^2 + y^2 = 4$ 与圆 C_2 : $x^2 + y^2 + 2x - 8y + 8 = 0$ 的位置关系为(
A. 相交	B. 内切	C. 外切	D. 外离		
3. 已知两条直线: <i>l</i> ₁ :(2	$(t+t)x + 4y = 2 - t, l_2 : 3x + t$	$(3+t)y = -6, l_1 / / l_2$, $y = -6, l_1 / / l_2$	= ()		
A. 1或-6	В6	C1	D. 1		
4. 正四面体 $ABCD$ 的棱长为 1 , 点 M 为 CD 的中点, 点 O 为 AM 的中点, 则 BO 的长为 $($					
A. $\frac{\sqrt{11}}{4}$	B. $\frac{11}{16}$	C. $\frac{3\sqrt{2}}{4}$	D. $\frac{\sqrt{5}}{4}$		
5. 椭圆 C 的左、右焦点分	别记为 F_1 、 F_2 ,过左焦点 F	T_1 的直线交椭圆 C 于 A 、 B 两	5点.若弦长 <i>AB</i>		
的最小值为 3,且 $\triangle ABF_2$ 的周长为 8,则椭圆 C 的焦距等于()					
A. 1	B. 2	C. $\sqrt{3}$	D. $2\sqrt{3}$		
6. 在棱长为2的正方体A	$ABCD - A_1B_1C_1D_1$ 中,点 E	$, F$ 分别为棱 BC 、 DD_1 的中	点,则点 F 到		
直线 AE 的距离为()					
A. $\frac{2\sqrt{5}}{5}$	B. $\frac{21}{5}$	C. $\frac{\sqrt{115}}{5}$	D. $\frac{\sqrt{105}}{5}$		
7. 已知直线 <i>l</i> : <i>x</i> + <i>y</i> +1=	0 与圆 $C:(x-3)^2+(y-4)^2$	$(Q)^2 = 1$, 点 P , Q 在直线 l	上,过点 P 作		
圆 C 的切线,切点分别为	A,B,3 PA $ $ 取最小值 $ $	时,则 $ \mathit{QA} $ + $ \mathit{QB} $ 的最小	值为()		
A. $\sqrt{31}$	B. $8\sqrt{2}$	C. 2√31	D. $2\sqrt{33}$		
8. 已知椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} =$	$=1(a>b>0)$ 的焦点为 F_1 、	F_2 ,直线 $y = \sqrt{3}x$ 与椭圆	C交于 M 、 N		

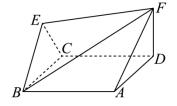
,若 $F_1M \cdot F_1N = 0$,则椭圆 C 的离心率为(
A.	$\sqrt{3}-1$	B. $\sqrt{3} + 1$	C. $2 - \sqrt{3}$	D. $\frac{\sqrt{3}+1}{2}$				
二,	二、多项选择题 本题共 3 小题,每小题 6 分,共 18 分.在每小题给出的选项中,有多项符合							
题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.								
9.	已知椭圆 $C: \frac{y^2}{25} + \frac{x^2}{16} =$	=1,则椭圆 <i>C</i> 的()						
A. $\frac{3}{5}$	焦点在 <i>x</i> 轴上	B. 长轴长为10	C. 短轴长为4	D. 离心率为				
10. 下列命题正确的有()								
A.	A. 已知向量 $\overset{\mathbf{r}}{a} = (2, -1, 3), \overset{\mathbf{l}}{b} = (-4, 2, t)$ 的夹角为钝角,则实数 t 的取值范围为 $\left(-\infty, \frac{10}{3}\right)$							
B.	向量 $\overset{1}{a} = (-2, -1, 2)$ 在[句量 $\vec{b}=(1,2,-1)$ 上的投影	向量的模为 $\sqrt{6}$					
C.	O为空间任意一点,若	$AP = -\frac{1}{4}AA + \frac{1}{8}AB + tC$	ur OC, 若 A, B, C, P 四点	共面,则 $t = \frac{1}{8}$				
D.	设直线 l 的方程为 $x+y$	$\cos \theta + 3 = 0 (\theta \in \mathbf{R})$, \square	直线 l 的倾斜角 $lpha$ 的取值范	語是 $\left[\frac{\pi}{4}, \frac{3\pi}{4}\right]$				
11.	已知点 $P(x,y)$ 在圆 x^2	$y^2 + y^2 - 2x + 4y + 4 = 0$	运动,则()					
A.	$x-2y$ 的取值范围是[$\frac{1}{2}$]	$5 - \sqrt{5}, 5 + \sqrt{5}$						
B.	$\frac{x}{y}$ 的最小值是 $-\frac{3}{4}$							
C.	$x^2 + y^2 - 4x - 2y + 1$ is	的最大值为 $\sqrt{10}-3$						
D.	若直线 $l:6x+8y+5=$	= 0 , 则满足 <i>P</i> (<i>x</i> , <i>y</i>) 到直约	发 l 的距离为 $\frac{1}{2}$ 的点有 3 个					

三、填空题: 本题共3小题,每小题5分,共15分.

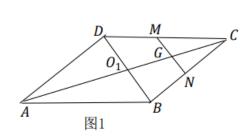
12. 直线 $l_1: 2x-y+3=0$ 关于点(1,2)对称的直线方程为_____.

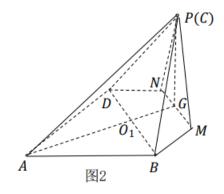
13. 直线 l: x-2y+m=0 被 圆 $(x+1)^2+(y-2)^2=8$ 截 得 的 弦 长 为 $2\sqrt{3}$, 则 m=

- 14. 已知棱长为2的正方体 $ABCD-A_1B_1C_1D_1$ 内有一内切球O,点P在球O的表面上运动,则 $PA\cdot PC$ 的取值范围为______.
- 四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.
- 15 已知直线 $l_1: x-y+1=0, l_2: 2x+y+5=0$.
- (1) 求过直线 l_1 与 l_2 的交点,且与直线 l_3 : 2x-3y-1=0垂直的直线l的方程;
- (2) 求过点(0,0),(2,4),且圆心在直线 l_1 上的圆C的方程.
- 16. 已知直线 $l: 2mx + (m+1)y + 3m 1 = 0 (m \in \mathbf{R})$,椭圆 $C: \frac{x^2}{4} + \frac{y^2}{2} = 1$.
- (1) 求证:对于任意实数m,直线l过定点P,并求出点P坐标;
- (2) 当m=1时,求直线l被椭圆C截得的弦长.
- 17. 如图,正方形 ABCD 与正三角形 BCE 的边长均为 2,平面 BCE 上平面 ABCD,FD 上平面 ABCD,且 $FD = \sqrt{3}$.



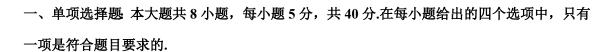
- (1) 求证: *EF* // 平面 *ABCD*;
- (2) 求平面 ABF 与平面 EBF 夹角的余弦值.
- 18. 如图 1,在边长为 4 的菱形 ABCD 中, $\angle DAB = 60^{\circ}$,点 M ,N 分别是边 BC ,CD 的中点, $AC \cap BD = O_1$, $AC \cap MN = G$.沿 MN 将 VCMN 翻折到 VPMN 的位置,连接 PA ,PB , PD , 得到如图 2 所示的五棱锥 P-ABMND .





- (1) 在翻转过程中是否总有平面 PBD 上平面 PAG? 证明你的结论;
- (2) 设点 E 为线段 PA 的中点,点 Q 在线段 BE 上,且 $BQ = \lambda BE$ ($0 < \lambda < 1$),当四棱锥 P MNDB 的体积最大时,是否存在满足条件的实数 λ ,使直线 MQ 与平面 PAB 所成角的正弦值的最大值.若存在,求出 λ 的值;若不存在,请说明理由.
- 19. 古希腊数学家阿波罗尼斯的著作《圆锥曲线论》中给出圆的另一种定义: 平面内,到两个定点的距离之比值为常数 $\lambda(\lambda > 0, \lambda \neq 1)$ 的点的轨迹是圆,我们称之为阿波罗尼斯圆.已知点 P 到 A(0,-2) 的距离是点 P 到 B(0,1) 的距离的 2 倍.
- (1) 求点P的轨迹 Ω 的方程;
- (2) 过点 B 作直线 l_1 , 交轨迹 Ω 于 P , Q 两点 P , Q 不在 Y 轴上.
- (i) 过点 B 作与直线 l_1 垂直的直线 l_2 ,交轨迹 Ω 于 E , F 两点,记四边形 EPFQ 的面积为 S ,求 S 的最大值;
- (ii) 设轨迹 Ω 与y轴正半轴的交点为C,直线OP,CQ相交于点N,试证明点N在定直线上,求出该直线方程

2024-2025 学年重庆市黔江区高二上学期 11 月月考数学 检测试题



- 1. 直线 x y + m = 0 的倾斜角为 ()
- A. $\frac{\pi}{6}$

- B. $\frac{\pi}{4}$
- C. $\frac{\pi}{3}$

D. $\frac{3\pi}{4}$

【正确答案】B

【分析】将直线的一般式改成斜截式,根据倾斜角和斜率的关系,即可求出结果

【详解】根据题意可知直线 x-y+m=0 可可变形为 y=x+m

故直线x-y+m=0的斜率为1,

设直线x-y+m=0 倾斜角为 θ ,

由
$$\tan \theta = 1$$
 可得 $\theta = \frac{\pi}{4}$.

故选: B

- 2. 圆 C_1 : $(x-2)^2 + y^2 = 4$ 与圆 C_2 : $x^2 + y^2 + 2x 8y + 8 = 0$ 的位置关系为(
- A. 相交
- B. 内切
- C. 外切
- D. 外离

【正确答案】C

【分析】求出圆心距与两圆半径的和、差比较可得.

【详解】由题意圆 C_2 标准方程为 $(x+1)^2 + (y-4)^2 = 9$,

所以 $C_1(2,0), C_2(-1,4)$, 半径分别为2, 3,

$$|C_1C_2| = \sqrt{(-1-2)^2 + (4-0)^2} = 5 = 2+3$$
, 因此两圆外切,

故选: C.

- 3. 已知两条直线: $l_1:(2+t)x+4y=2-t, l_2:3x+(3+t)y=-6, l_1//l_2$,则t=(
- A. 1或-6
- В. -6

- C. -1
- D. 1

【正确答案】D

【分析】根据两直线平行充要条件即可判断,

【详解】由题意知
$$l_1//l_2$$
,则
$$\begin{cases} \frac{2+t}{4} = \frac{3}{3+t} \\ \frac{2-t}{4} \neq \frac{-6}{3+t} \end{cases}$$
,解之可得 $t = 1$ 或 $t = -6$ (舍).

故选: D

4. 正四面体 ABCD 的棱长为 1, 点 M 为 CD 的中点, 点 O 为 AM 的中点, 则 BO 的长为 (

A.
$$\frac{\sqrt{11}}{4}$$

B.
$$\frac{11}{16}$$

C.
$$\frac{3\sqrt{2}}{4}$$

D.
$$\frac{\sqrt{5}}{4}$$

【正确答案】A

【分析】设 AB = a, AC = b, AD = c ,将 BO 用基底 AB = a, AC = b, AD = c 表达出来,再求向量模即可求解.

【详解】设AB = a, AC = b, AD = c

因为正四面体 ABCD 的棱长为 1,由题意可知 $\stackrel{\mathbf{r}}{a} \cdot \stackrel{\mathbf{r}}{b} = |\stackrel{\mathbf{r}}{a}| \cdot |\stackrel{\mathbf{r}}{b}| \cos \angle BAC = \frac{1}{2}$

 $\stackrel{r}{a} \cdot \stackrel{r}{c} = \stackrel{r}{b} \cdot \stackrel{r}{c} = \frac{1}{2}$, 因为点 M 为 CD 的中点, 点 O 为 AM 的中点,

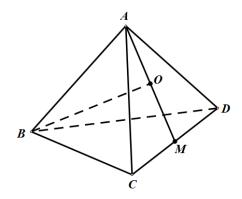
所以
$$AO = \frac{1}{2} \frac{\mathbf{u} \mathbf{u} \mathbf{r}}{AM} = \frac{1}{4} \begin{pmatrix} \mathbf{u} \mathbf{r} & \mathbf{u} \mathbf{r} \\ AC + AD \end{pmatrix} = \frac{1}{4} \begin{pmatrix} \mathbf{r} & \mathbf{r} \\ b + c \end{pmatrix}$$
,

$$BO = AO - AB = -a + \frac{1}{4}b + \frac{1}{4}c,$$

因为
$$BO = -a + \frac{1}{4}b + \frac{1}{4}c$$
,

所以
$$|BO| = \sqrt{\left(-\frac{r}{a} + \frac{1}{4}\frac{r}{b} + \frac{1}{4}\frac{r}{c}\right)^2} = \sqrt{\left|a\right|^2 + \frac{\left|b\right|^2}{16} + \frac{\left|c\right|^2}{16} - \frac{1}{2}\frac{r}{a} \cdot b - \frac{1}{2}\frac{r}{a} \cdot c + \frac{1}{8}\frac{r}{b} \cdot c} = \frac{\sqrt{11}}{4}$$

故选: A



5. 椭圆C的左、右焦点分别记为 F_1 、 F_2 ,过左焦点 F_1 的直线交椭圆C于A、B两点.若弦长|AB|的最小值为 3,且 $\triangle ABF_2$ 的周长为 8,则椭圆C的焦距等于(

A 1

B. 2

C. $\sqrt{3}$

D. $2\sqrt{3}$

【正确答案】B

【分析】过焦点的弦长最小时,弦所在直线与x轴(长轴)垂直,此时弦长为 $\frac{2b^2}{a}$,焦点 $\triangle ABF_2$ (弦 AB 边另一个焦点)的周长为4a,由此求得a,b,c,得结论.

【详解】由题意可知
$$\frac{b^2}{a} = \frac{3}{2}$$
, $4a = 8$, $\therefore a = 2$, $b^2 = 3$, $\therefore c = 1$, 焦距等于 2

故选: B.

6. 在棱长为 2 的正方体 $ABCD - A_1B_1C_1D_1$ 中,点 E , F 分别为棱 BC 、 DD_1 的中点,则点 F 到直线 AE 的距离为(

A. $\frac{2\sqrt{5}}{5}$

B. $\frac{21}{5}$

C. $\frac{\sqrt{115}}{5}$

D. $\frac{\sqrt{105}}{5}$

【正确答案】D

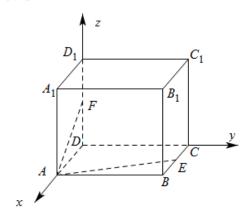
【分析】以D为原点,DA,DC,DD1分别为x,y,z 轴建立如图所示的空间直角坐标系,用空间向量法求点线距.

【详解】以 D 为原点, DA, DC, DD_1 分别为 x, y, z 轴建立空间直角坐标系,如图,则 A(2,0,0) , E(1,2,0) , F(0,0,1) ,

$$AE = (-1,2,0)$$
,则 AE 方向的单位向量 $u = \left(\frac{-1}{\sqrt{5}},\frac{2}{\sqrt{5}},0\right)$, $AF = (-2,0,1)$,

那么 $AF \cdot u = \frac{2}{\sqrt{5}}$,所以 F 到直线 AE 的距离 $d = \sqrt{AF^2 - (AF \cdot u)^2} = \sqrt{5 - \frac{4}{5}} = \frac{\sqrt{105}}{5}$,

故选: D.



7. 已知直线 l: x+y+1=0 与圆 $C: (x-3)^2+(y-4)^2=1$,点 P, Q 在直线 l 上,过点 P 作 圆 C 的切线,切点分别为 A , B , 当 |PA| 取最小值时,则 |QA|+|QB| 的最小值为(

A.
$$\sqrt{31}$$

B.
$$8\sqrt{2}$$

C.
$$2\sqrt{31}$$

D.
$$2\sqrt{33}$$

【正确答案】C

【分析】由切线长公式知当 $CP \perp l$ 时,|PA|最小,结合点到直线距离公式求得|PA| = |PB|的最小值,然后作 A 关于直线 l的对称点 A',可知当 Q点为直线 A'B与 l的交点时,|QA| + |QB|最小,由对称知此时 Q与 P 重合,从而易得最小值.

【详解】
$$|PA| = \sqrt{|CP|^2 - |CA|^2} = \sqrt{|CP|^2 - 1}$$
,所以当 $CP \perp l$ 时, $|PA|$ 最小,

由点到直线的距离公式可得此时 $|CP| = \frac{|3+4+1|}{\sqrt{2}} = 4\sqrt{2}$,

:
$$|PA| = |PB| = \sqrt{|PC|^2 - 1} = \sqrt{31}$$
,

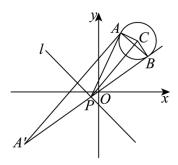
过 A 作直线 l 的对称点 A' ,再连接 A'B , A'B 与直线 l 的交点即为所找的 Q 点,

由于PB,PA关于直线PC对称, $PC \perp l$,PA'与PA关于直线l对称,

因此PA'与PB就是同一条直线,即Q点就是P点,

所以|QA| + |QB|的最小值等于 $|A'B| = 2|PB| = 2\sqrt{31}$,

故选: C.



8. 已知椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$ 的焦点为 F_1 、 F_2 , 直线 $y = \sqrt{3}x$ 与椭圆 C 交于 M、 N,

若 $F_1M \cdot F_1N = 0$,则椭圆C的离心率为(

A.
$$\sqrt{3} - 1$$

B.
$$\sqrt{3} + 1$$

C.
$$2 - \sqrt{3}$$

A.
$$\sqrt{3}-1$$
 B. $\sqrt{3}+1$ C. $2-\sqrt{3}$ D. $\frac{\sqrt{3}+1}{2}$

【正确答案】A

【分析】由椭圆对称性知,原点 O 为 MN 的中点,进而可求得 $OM = OF_1 = OF_2 = c$,由直 线斜率可求得 $\angle OMF_1 = \angle MF_1F_2 = 30^\circ$,根据椭圆定义即可求出椭圆的离心率.

【详解】由椭圆对称性知,原点O为MN的中点,

因为 $F_1M \cdot F_1N = 0$,所以 $\angle MF_1N = 90^\circ$,

所以 $OM = OF_1 = OF_2 = c$,则 $MF_1 \perp MF_2$,

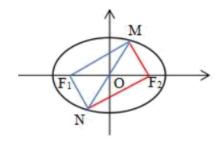
又直线 MN 的倾斜角为 60° , $\angle OMF_2 = 60^{\circ}$,

所以 $\angle OMF_1 = \angle MF_1F_2 = 30^\circ$

则 $|MF_2| = c$, $|MF_1| = \sqrt{3}c$, 又 $|MF_1| + |MF_2| = 2a$,

所以
$$c + \sqrt{3}c = 2a$$
,所以 $e = \frac{c}{a} = \frac{2}{\sqrt{3} + 1} = \sqrt{3} - 1$.

故选: A



- 二、多项选择题 本题共 3 小题,每小题 6 分,共 18 分.在每小题给出的选项中,有多项符合题目要求.全部选对的得 6 分,部分选对的得部分分,有选错的得 0 分.
- 9. 已知椭圆 $C: \frac{y^2}{25} + \frac{x^2}{16} = 1$,则椭圆C的(
- A. 焦点在 *x* 轴上
- B. 长轴长为10
- C. 短轴长为4
 - D. 离心率为

 $\frac{3}{5}$

【正确答案】BD

【分析】求出椭圆C的a、b、c的值,结合椭圆的几何性质逐项判断即可.

【详解】在椭圆
$$C: \frac{y^2}{25} + \frac{x^2}{16} = 1$$
中, $a = 5$, $b = 4$, $c = \sqrt{a^2 - b^2} = \sqrt{25 - 16} = 3$,

对于 A 选项, 椭圆 C 的焦点在 Y 轴上, A 错;

对于 B 选项, 椭圆 C 的长轴长为 10, B 对:

对于 C 选项, 椭圆 C 的短轴长为 8 , C 错;

对于 D 选项, 椭圆 C 的离心率为 $e = \frac{c}{a} = \frac{3}{5}$, D 对.

故选: BD.

- 10. 下列命题正确的有()
- A. 己知向量 $\overset{\mathbf{r}}{a} = (2, -1, 3), \overset{\mathbf{l}}{b} = (-4, 2, t)$ 的夹角为钝角,则实数 t 的取值范围为 $\left(-\infty, \frac{10}{3}\right)$
- B. 向量 a = (-2, -1, 2) 在向量 b = (1, 2, -1) 上的投影向量的模为 $\sqrt{6}$
- C. O为空间任意一点,若 $AP = -\frac{1}{4} \frac{UU}{OA} + \frac{1}{8} \frac{UU}{OB} + tOC$,若 A, B, C, P 四点共面,则 $t = \frac{1}{8}$
- D. 设直线l的方程为 $x+y\cos\theta+3=0(\theta\in\mathbf{R})$,则直线l的倾斜角 α 的取值范围是 $\left[\frac{\pi}{4},\frac{3\pi}{4}\right]$

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问:

https://d.book118.com/185144211011012023