专题五 不等式

一、多项选择题

1. 【答案】BCD

【解析】首先可得 0 < b < 1,当 $a = \frac{3}{4}$, $b = \frac{1}{2}$ 时, $a + b = \frac{5}{4}$,故 A 错误;经判断,其他选项均正确,故选 BCD.

2. 【答案】AB

【解析】因为 $\frac{1}{a} < \frac{1}{b} < 0$,则有 b < a < 0,

对于 A, 因为 b < a < 0, 所以 $a^2 < b^2$, 故选项 A 正确;

对于 B, 因为 b < a < 0, 所以 $\frac{b}{a} > 0$, $\frac{a}{b} > 0$ 且 $\frac{b}{a} \neq \frac{a}{b}$, 故 $\frac{b}{a} + \frac{a}{b} > 2\sqrt{\frac{b}{a} \cdot \frac{a}{b}} = 2$, 故选项 B 正确;

对于 C, 因为 b < a < 0, 所以 $a^2 < ab$, 故 $1ga^2 < 1g$ (ab) , 故选项 C错误;

对于 D, 因为|a|与 1 的大小关系不确定, 故函数 $y=|a|^x$ 的单调性不确定, 故 $|a|^a$ 与 $|a|^b$ 的大小不确定,

故选项 D错误.

故选: AB.

3. 【答案】ACD

【解析】A: 若 a < b < 0, 则 |a| > |b| > 0, -a > -b > 0, $\therefore -a|a| > -b|b|$, $\therefore a|a| < b|b|$, $\therefore A$ 正确,

B: :
$$a>0$$
, $b>0$, $c>0$, : $\frac{a+c}{b+c} - \frac{a}{b} = \frac{b(a+c)-a(b+c)}{b(b+c)} = \frac{c(b-a)}{b(b+c)}$ 不能确定符号, : B错误,

C: :
$$a > 0$$
, $b > 0$, : $a + \frac{b}{a} + \frac{4}{ab} = \frac{a}{2} + \frac{a}{2} + \frac{b}{a} + \frac{4}{ab} = (\frac{a}{2} + \frac{b}{a}) + (\frac{a}{2} + \frac{4}{ab}) \ge 2\sqrt{\frac{b}{2}} + 2\sqrt{\frac{b}{2}} \ge 4\sqrt{1} = 4$,

当且仅当 a=b 时取等号, $:: a+\frac{b}{a}+\frac{4}{ab} \ge 4$. : C 正确,

$$D$$
: $:: a^2 + b^2 \ge 2ab$, $:: a^2 \ge 2ab - b^2$, $:: a \ge 0$, $:: a \ge 2b - \frac{b}{a}$, $:: D$ 正确.

故选: ACD.

4. 【答案】BCD

【解析】A: $\therefore a > b > 0$, $\therefore \frac{1}{a} < \frac{1}{b}$, $\therefore A$ 错误,

$$B: : a > b, : a - 1 > b - 1, \ \exists : y = 2021^x$$
在**R**上为增函数, : $2021^{a-1} > 2021^{b-1}$, : B 正确,

C:
$$\because a > b > 0$$
, $\therefore a + b + 2 - 2\sqrt{a} - 2\sqrt{b} = a + 2\sqrt{a} + 1 + b + 2\sqrt{b} + 1 = (\sqrt{a} + 1)^2 + (\sqrt{b} + 1)^2 > 0$, ∴ C 正确,

$$D: : a > b > 0, : \frac{1}{a} + \frac{1}{b} > 2\sqrt{\frac{1}{ab}} = \frac{2}{\sqrt{ab}}, : \frac{4}{a+b} < \frac{4}{2\sqrt{ab}} = \frac{2}{\sqrt{ab}}, : \frac{1}{a} + \frac{1}{b} > \frac{4}{a+b}, : D \to \mathbb{R}$$

故选: BCD.

5. 【答案】ACD

【解析】对 A, 由 a > 0, b > 0, 且 a - b = 1 可得 a > b > 0,

則
$$e^{a} - e^{b} = e^{b} \left(e^{a-b} - 1 \right) = e^{b} \left(e - 1 \right)$$
 ,

$$:: b > 0$$
, $:: e^b > 1$, 又 $e - 1 > 1$, $:: e^b (e - 1) > 1$, 即 $e^a - e^b > 1$, 故A正确;

对 B, 令
$$a=2,b=1$$
,则 $a^e-b^e=2^e-1>1$,故 B 错误;

对 C,
$$\frac{9}{a} - \frac{1}{b} = \left(\frac{9}{a} - \frac{1}{b}\right)(a - b) = 10 - \left(\frac{9b}{a} + \frac{a}{b}\right) = 10 - 2\sqrt{\frac{9b}{a} + \frac{a}{b}} = 4$$
, 当且仅当 $\frac{9b}{a} = \frac{a}{b}$ 时等号成立,

故 C 正确;

对 D,
$$2\log_2 a - \log_2 b = \log_2 \frac{a^2}{b} = \log_2 \frac{\left(b+1\right)^2}{b} = \log_2 \left(b + \frac{1}{b} + 2\right) \ge \log_2 \left(2\sqrt{b \cdot \frac{1}{b}} + 2\right) = 2$$
, 当且仅

故选: ACD.

6. 【答案】 B, C

【解析】对于 A, 当 a=0 时, $(\frac{2}{7})^a=(\frac{3}{7})^a$, A 不符合题意;

对于 B,若 b>a>1 ,则 $1< a<\sqrt{ab}$,两边取对数得 $\log_{ab}a<\log_{ab}\sqrt{ab}=\frac{1}{2}$,B 符合题意;

对于 C, 若
$$a>0$$
 , $b>0$, $a+2b=1$,则 $\frac{2}{a}+\frac{1}{b}=(\frac{2}{a}+\frac{1}{b})(a+2b)=4+\frac{4b}{a}+\frac{a}{b}$

$$\geq 4+2\sqrt{rac{4b}{a}\cdotrac{a}{b}}=8$$
 , 当且仅当 $rac{4b}{a}=rac{a}{b}$, 即 $a=2b=rac{1}{2}$ 时等号成立,C符合题意;

对于 D, 取
$$a = 1, b = 2$$
 , $\frac{1+a}{b^2} = \frac{2}{4} = \frac{1}{2} < \frac{1+2}{1} = 3$, D 不符合题意;

故答案为: BC

7. 【答案】AD

【解析】因为 a>0, b>0, a+2b=1,

所以
$$\frac{1}{a} + \frac{2}{b} = (\frac{1}{a} + \frac{2}{b})$$
 $(a+2b) = 5 + \frac{2b}{a} + \frac{2a}{b} \gg 5 + 2\sqrt{\frac{2b}{a} \cdot \frac{2a}{b}} = 9$,

当且仅当 a=b 时取等号, $\frac{1}{a}+\frac{2}{b}$ 取得最小值 9,A 正确;

$$a^{2}+b^{2}=b^{2}+(1-2b)^{2}=5b^{2}-4b+1=5(b-\frac{2}{5})^{2}+\frac{1}{5}$$

根据二次函数的性质可知,当 $b=\frac{2}{5}$ 时,上式取得最小值 $\frac{1}{5}$, B错误;

因为
$$1=a+2b \ge 2\sqrt{2ab}$$
,当且仅当 $a=2b=\frac{1}{2}$,即 $a=\frac{1}{2}$, $b=\frac{1}{4}$ 时取等号,

所以 $ab \leq \frac{1}{8}$,

log₂a+log₂b=log₂ab≤-3,即最大值-3, C错误;

$$2^{a}+4^{b} \ge 2\sqrt{2^{a+2b}} = 2\sqrt{2}$$
,当且仅当 $a=2b=\frac{1}{2}$,即 $a=\frac{1}{2}$, $b=\frac{1}{4}$ 时取等号,此时 $2^{a}+4^{b}$ 取得最小值 $2\sqrt{2}$,

D正确.

故选: AD.

8.【答案】ACD

潍坊高中数学

【解析】 A. 若 a > b > 0,则 $\frac{1}{a} < \frac{1}{b}$,若 c < 0,则 $\frac{c}{a} > \frac{c}{b}$ 成立,故 A 正确,

B. 若
$$a>0$$
, $b>0$, $c>0$, 则 $\frac{a}{b}-\frac{a+c}{b+c}=\frac{ab+ac-ab-bc}{b(b+c)}=\frac{(a-b)c}{b(b+c)}$, 则当 $a>b$ 时, $\frac{a}{b}>\frac{a+c}{b+c}$,故 B 错误,

C. 若
$$a > b > 0$$
,则($\frac{\sqrt{a} + \sqrt{b}}{2}$) $^2 - (\sqrt{\frac{a+b}{2}})^2 = \frac{a+b+2\sqrt{ab}}{4} - \frac{a+b}{2} = \frac{a+b+2\sqrt{ab}-2a-2b}{4} = -\frac{a+b-2\sqrt{ab}}{4} = -\frac{(\sqrt{a}-\sqrt{b})^2}{4}$ < 0,

则(
$$\frac{\sqrt{a}+\sqrt{b}}{2}$$
) 2 <($\sqrt{\frac{a+b}{2}}$) 2 ,即 $\frac{\sqrt{a}+\sqrt{b}}{2}$ < $\sqrt{\frac{a+b}{2}}$ 成立,故 C 正确,

D. 由
$$a+2b=2$$
 得 $a+1+2b=3$,即 $\frac{1}{a+1}+\frac{2}{b}=(\frac{1}{a+1}+\frac{2}{b})(\frac{a+1+2b}{3})=\frac{1}{3}(1+\frac{2b}{a+1}+4+\frac{2(a+1)}{b})\geq \frac{1}{3}(5+2\sqrt{\frac{2b}{a+1}\cdot\frac{2(a+1)}{b}})$

$$=\frac{1}{3}\times(5+4)=3,$$

当且仅当 $\frac{2b}{a+1} = \frac{2(a+1)}{b}$, 即 b=a+1 时取等号, 故 D正确,

故选: ACD.

9. 【答案】 A, D

【解析】对于 A 选项,函数 $y=(\frac{1}{3})^x$ 为 R 上的减函数,由 a>b>0 ,可得 $(\frac{1}{3})^a<(\frac{1}{3})^b$, A 选项正 确;

对于 B 选项, 取 c=0 , 则 $ac^2=bc^2$, B 选项错误;

对于 C 选项, 函数 $y = \log_2 x$ 为 $(0, +\infty)$ 上的增函数, 因为 a > b > 0 , 则 $\log_2 a > \log_2 b$,

则
$$\log_2 \frac{1}{a} = -\log_2 a < -\log_2 b = \log_2 \frac{1}{b}$$
 , C 选项错误;

对于 D 选项,由基本不等式可得 $2ab \le a^2 + b^2$,

所以,
$$(a+b)^2 = a^2 + b^2 + 2ab \le 2(a^2 + b^2)$$
 ,即 $(\frac{a+b}{2})^2 \le \frac{a^2+b^2}{2}$,

因为 a > b > 0 , 所以, $(\frac{a+b}{2})^2 < \frac{a^2+b^2}{2}$, D 选项正确.

故答案为: AD.

10. 【答案】BCD

【解析】A: $::\sin 1 \in (0, 1)$, $::2^{\sin 1} > 2^0 = 1$, $\log_2(\sin 1) < \log_2 1 = 0$, $::\log_2(\sin 1) < 2^{\sin 1}$, ::A 错 误,

$$B$$
: : $\pi^{-2} < \pi^{\frac{1}{2}}$, : $(\frac{1}{2})^2 < \pi^{\frac{1}{2}}$, : B 正确,

C:
$$(\sqrt{7} + 2)^2 = 11 + 4\sqrt{7}$$
, $(\sqrt{6} + \sqrt{5})^2 = 11 + 2\sqrt{30}$, $\sqrt[3]{4\sqrt{7}} < 2\sqrt{30}$,

$$\therefore (\sqrt{7}+2)^2 < (\sqrt{6}+\sqrt{5})^2, \ \therefore \sqrt{7}+2 < \sqrt{6}+\sqrt{5}, \ \therefore \sqrt{7}-\sqrt{5} < \sqrt{6}-2, \ \therefore C$$
正确,
D: $\log_3 4 = 1 + \log_3 \frac{4}{3}, \ \log_5 6 = 1 + \log_5 \frac{6}{5},$

$$D: \log_3 4 = 1 + \log_{\frac{4}{2}}, \log_5 6 = 1 + \log_{\frac{6}{5}}$$

$$:: \log_3 \frac{4}{3} > \log_5 \frac{6}{5} > \log_5 \frac{6}{5}, :: \log_3 4 > \log_5 6, :: \log_4 3 < \log_6 5, :: D$$
正确.

故选: BCD.

11. 【答案】ACD

参考答案 潍坊高中数学 VFMATH 【解析】 $|\overrightarrow{OA}|^2 = t^2 + \frac{4}{t^2} \ge 2\sqrt{t^2 + \frac{4}{t^2}} = 4$,当且仅当 $t^2 = \frac{4}{t^2}$,即 $t = \pm \sqrt{2}$ 时,取 "=", $\therefore |\overrightarrow{OA}|$ 的最

小值是 2, ∴A 对;

当 t=1, m=4 时, A(1, 2), B(4, 2), C(3, 0), 可知 AB//x 轴且 AB=3, 点 C到 AB 的距离为 2,

 $\therefore \triangle ABC$ 的面积为 $\frac{1}{2} \times 3 \times 2 = 3$, $\therefore B$ 错;

点 A 关于 x 轴的对称点 A 坐标为(1, - 2),则 $|\overrightarrow{PA}|$ + $|\overrightarrow{PB}|$ 的最小值为 $AB = \sqrt{(1-4)^2 + (-2-2)^2} = \sqrt{(1-4)^2 + (-2-2)^2}$ 5, ∴ C对:

 $\ \, : \theta \in (0, \pi), : t = \sin \theta \in (0, 1], : \overrightarrow{CA} = \overrightarrow{CB} = (0, \pi), : \overrightarrow{CA} = (0,$ >0,

得:
$$m < \frac{t^2 - 7t + 16}{3 - t} = \frac{(3 - t)^2 + (3 - t) + 4}{3 - t} = (3 - t) + \frac{4}{3 - t} + 1.$$

2 \leq 3 - t \leq 3 - t = s \in [2, 3),则(3 - t) + $\frac{4}{3-t}$ + $1 = s + \frac{4}{s}$ + $1 \geq 2\sqrt{s} + \frac{4}{s}$ + 1 = 5,当且仅当 $s = \frac{4}{s}$,即 s=2 时取"=", : m < 5, : D对.

故选: ACD.

二、填空题

12. 【答案】(-∞, 2]

【解析】解:: :: 命题 " $\exists x \in \mathbb{R}$, $e^x < a - e^{-x}$ " 为假命题,

∴ $\forall x \in \mathbb{R}$, $e^{x} + e^{-x} \geqslant a$ 恒成立,

 $\therefore e^{x} + e^{-x} \ge 2\sqrt{e^{x} \cdot e^{-x}} = 2$, 当且仅当 x = 0 时等号成立,

故实数 a 的取值范围为: $(-\infty, 2]$.

故答案为: (-∞,2].

13. 【答案】16

【解析】由题意得
$$a+4b=4$$
, $a>0$, b 独方高中数学 则 $\frac{4}{a}+\frac{9}{b}=\frac{1}{4}(\frac{4}{a}+\frac{9}{b})$ $(a+4b)=\frac{1}{4}(40+\frac{16b}{a}+\frac{9a}{b})$ $>\frac{1}{4}(40+2\sqrt{\frac{16b}{a}+\frac{9a}{b}})=16$,

当且仅当 $\frac{16b}{a} = \frac{9a}{b}$ 且 a+4b=4,即 a=1, $b=\frac{3}{4}$ 时取等号,此时 $\frac{4}{a} + \frac{9}{b}$ 的最小值 16.

故答案为: 16.

专题六 数列

参考答案 潍坊高中数学 VFMATH

一、单项选择题

1. 【答案】 D

【解析】因为
$$2S_3 = a_2 + a_3 + a_4$$
 ,所以 $2(a_1 + a_2 + a_3) = a_2 + a_3 + a_4$,

因为
$$a_1 \neq 0$$
 ,所以 $2 + q + q^2 = q^3$,

即
$$(q-2)(q^2+q+1)=0$$
 ,

因为
$$q^2 + q + 1 \neq 0$$
 , 所以 $q = 2$.

故答案为: D

2. 【答案】A

【解析】由题意 $2a_{2021}=a_{2019}+a_{2020}$,

设正项等比数列
$$\{a_n\}$$
的公比为 $q(q>0)$, $2a_{2020} - q = \frac{a_{2020}}{q} + a_{2020}$

$$\therefore a_{2020} \neq 0$$
, ∴ $2q^2 - q - 1 = 0$, 解得 $q = -\frac{1}{2}$ (舍去), 或 $q = 1$.

故选: A.

3. 【答案】C

【解析】:
$$S_n$$
是等差数列 $\{a_n\}$ 的前 n 项和,
$$\begin{vmatrix} 1 & (10-a_7) \\ 1 & a_9 \end{vmatrix} = 0,$$

$$\therefore a_9 - (10 - a_7) = 0$$
,解得 $a_9 + a_7 = 10$,

$$\therefore S_{15} = \frac{15}{2} (a_1 + a_{15}) = \frac{15}{2} (a_9 + a_7) = \frac{15}{2} \times 10 = 75.$$

故选: C.

4. 【答案】B

【解析】设等差数列共有(2n+1)项,由题意得 $S_{\hat{a}} = a_1 + a_2 + \cdots + a_{2n+1}$, $S_{\text{\tiny (4)}} = a_2 + a_4 + \cdots + a_{2n}$,

故
$$S_{\mathfrak{H}} - S_{\mathfrak{H}} = a_1 + (a_3 - a_2) + \bullet \bullet \bullet + (a_{2n+1} - a_{2n}) = a_1 + d + \bullet \bullet \bullet + d = a_1 + nd = a_{n+1} = 319 - 290 = 29.$$

故中间项 a_{n+1}为 29.

潍坊高中数学

故选: B.

5. 【答案】C

【解析】由数列
$$\{a_n\}$$
, $\{b_n\}$ 满足 $a_1 = \frac{1}{2}$, $a_n + b_n = 1$, $b_{n+1} = \frac{b_n}{1 - a_n^2}$,

可得
$$b_n=1$$
 - a_n ①, $b_{n+1}=\frac{b_n}{1-a_n^2}=\frac{b_n}{(1-a_n)(1+a_n)}=\frac{b_n}{b_n(1+a_n)}=\frac{1}{2-b_n}$

则 $b_{n+1} = \frac{1}{2-b_n}$,两边同时减去 1,得 $b_{n+1} - 1 = \frac{1}{2-b_n} - 1 = \frac{b_n-1}{2-b_n}$,

$$\text{II}\frac{1}{b_{n+1}-1}-\frac{1}{b_{n}-1}=-1,$$

$$\because \frac{1}{b_1 - 1} = \frac{1}{-a_1} = -2,$$

 $: \{\frac{1}{b_{n}-1}\}$ 是以 - 2 为首项, - 1 为公差的等差数列.

$$\therefore b_n = \frac{n}{n+1},$$

故
$$b_{2021} = \frac{2021}{2022}$$

故选: C.

6. 【答案】C

【解析】由第 1 项 1=1×1, 第 2 项 6=2×3,

第3项15=3×5,第4项28=4×7,...,

归纳得, 第 n 项为 n (2n-1),

∴第 10 项为 10× (20 - 1) =190,

故选: C.

7. 【答案】D

【解析】由题意可得 f(1) = 1, f(2) = 1, f(3) = 2, f(4) = 2, f(5) = 2, f(6) = 2, f(7)

$$=3$$
, $f(8) = 3$, $f(9) = 3$, $f(10) = 3$, $f(11) = 3$, $f(12) = 3$,

...,可得依次为2个1,4个2,6个3,8个4,10个5,...,

因此 $a_1+a_2=2\times 1=2$, $a_3+a_4+a_5+a_6=4\times \frac{1}{2}=2$, $a_7+a_8+\ldots+a_{12}=6\times \frac{1}{3}=2$, $a_{13}+a_{14}+\ldots+a_{20}=8\times \frac{1}{4}=2$, ...,

由 20=10×2,可得 m=2+4+6+8+...+20= $\frac{1}{2}$ ×10× (2+20) =110.

故选: D.

二、多项选择题

8. 【答案】ABC

【解析】 $a_1=1$, $a_n \cdot a_{n+1}=2^n$, $\therefore a_2 \cdot a_1=2$, 即 $a_2=2$,

$$a_n \cdot a_{n+1} = 2^n$$
, $a_{n+1} \cdot a_{n+2} = 2^{n+1}$,

$$\therefore \frac{a_{n+2}}{a_n} = 2,$$

::数列 $\{a_n\}$ 的奇数列和偶数列,分别是以2为公比的等比数列,

参考答案

- $a_{2n}=2\times 2^{n-1}=2^n$, $a_{2n-1}=1\times 2^{n-1}=2^{n-1}$,
- ∴ *a*₄=4, 故 *AB* 正确;
- $\therefore a_{2n} a_{2n-1} = 2^n 2^{n-1} = 2^{n-1}$, 故 C正确;
- $\therefore a_{2n} + a_{2n-1} = 2^{n} + 2^{n-1} = 3 \times 2^{n-1}$, 故 D不正确.

故选: ABC.

9. 【答案】ABD

【解析】数表中,每行是等差数列,且第一行的首项是 1,公差为 2,第二行的首项是 4,公差为 4,第三行的首项是 12,公差为 8,每行的第一个数满足数列 $a_n=n\times 2^{n-1}$,每行的公差构成一个以 2 为首项,公比为 2 的等比数列,公差满足数列 $d_n=2^n$.

对于选项 A: 由题可知,每行第一个数满足下列关系: $a_n = n \times 2^{n-1}$,所以第 6 行第 1 个数为 $a_6 = 6 \times 2^{6-1} = 192$,故 A 正确;

对于选项 C: 第 10 行的第一个数为 $a_{10}=10\times 2^{10-1}=10\times 2^9$, 公差为 2^{10} , 所以前 10 个数的和为:

$$10 \times 10 \times 2^9 + \frac{10 \times 9}{2} \times 2^{10} = 190 \times 2^9$$
, 故 C 错误;

对于选项 D: 数表中第 2021 行中第一个数为 $a_{2021}=2021\times 2^{2021-1}=2021\times 2^{2020}$,第 2021 行的公差为 2^{2021} ,故数表中第 2021 行第 2021 个数为 $2021\times 2^{2020}+(2021-1)\times 2^{2021}=6061\times 2^{2020}$,选项 D 正确.

故选: ABD.

10. 【答案】ABD

【解析】设丢失的这个数据为a,由题意可得,在数为<math>2,平均数为 $\frac{25+a}{7}$,

①当 $a \le 2$ 时,这列数位 a, 2, 2, 2, 4, 5, 10,则中位数为 2,

所以 $\frac{25+a}{7}$, 2, 2, 成等差数列,则 $\frac{25+a}{7}$ = 2, 解得 a=-11<2, 符合题意;

②当 2<a<4 时,这列数位 2, 2, 2, a, 4, 5, 10,则中位数为 a,

所以 $\frac{25+a}{7}$, a, 2 成等差数列, 则 $2a=\frac{25+a}{7}+2$, 解得 a=3, 符合题意;

③当 $a \ge 4$ 时,这列数为 2,2,,2,4,a,5,10,则中位数为 4,

所以 $\frac{25+a}{7}$, 4,2 成等差数列,则有 $2\times 4=\frac{25+a}{7}+2$,解得 a=17,符合题意.

故选: ABD.

11. 【答案】ABD

【解析】
$$a_n = a_{n-1} + 2a_{n-2}$$
, $a_n + a_{n-1} = 2a_{n-1} + 2a_{n-2} = 2 (a_{n-1} + a_{n-2}) (n \ge 3)$,

因为
$$a_1 = a_2 = 1$$
,所以 $a_3 = a_1 + 2a_2 = 3$,

$$a_3+a_2=4=2 (a_2+a_1),$$

所以数列 $\{a_n+a_{n+1}\}$ 是首项为2,公比为2的等比数列,

所以
$$a_n + a_{n+1} = 2 \cdot 2^{n-1} = 2^n$$
, 故选项 A 正确;

$$a_n = a_{n-1} + 2a_{n-2}$$

$$a_n - 2a_{n-1} = 2a_{n-2} - a_{n-1} = - (a_{n-1} - 2a_{n-2}),$$

$$a_3 - 2a_2 = 3 - 2 = 1$$
, $a_2 - 2a_1 = 1 - 2 = -1$,

所以 $\{a_{n+1} - 2a_n\}$ 是首项为 - 1,公比为 - 1的等比数列,

$$a_{n+1} - 2a_n = -1 \cdot (-1)^{n-1} = (-1)^n$$
, 故选项 B 正确;

$${a_{n+1} + a_n = 2^n \atop a_{n+1} - 2a_n = (-1)^n}$$
, 所以 $a_n = \frac{2^n - (-1)^n}{3}$, 故选项 C 错误;

$$S_{20} = a_1 + a_2 + \cdots + a_n$$

$$=\frac{2-(-1)}{3}+\frac{2^2-(-1)^2}{3}+\cdots+\frac{2^{20}-(-1)^{20}}{3}$$

$$=\frac{(2+2^2+\cdots+2^{20})-[(-1)+(-1)^2+\cdots+(-1)^{20}]}{3}$$

$$=\frac{1}{3}\times \left[\frac{2(1-2^{20})}{1-2}-\frac{(-1)\times [1-(-1)^{20}]}{1-(-1)}\right]$$

$$=\frac{2}{3}(2^{20}-1)=\frac{2}{3}(4^{10}-1)$$
,故选项 D 正确.

故选: ABD.

12. 【答案】ABD

潍坊高中数学

【解析】由 $a_1 = 3+3$, $a_2 = 3+3+9$, $a_3 = 3+3+9+27$, $a_4 = 3+3+9+27+81$, , ..., $a_n = 3+3^1+3^2+3^3+\dots+3^n = 3+\frac{3(1-3^n)}{1-3}$

$$=\frac{3^{n+1}+3}{2}$$
,

由 a₁有 3 项, a₂有 5 项, a₃有 9 项, a₅有 17 项, …,

故 a_n 有 2^n+1 项. 故 C错误;

所以 $k+2=2^n+1$, 即 $k+1=2^n$, 故 A 正确:

由
$$a_n = \frac{3^{n+1}+3}{2}$$
,可得 $a_{n+1} = \frac{3^{n+2}+3}{2} = 3a_n - 3$,故 B 正确;

$$\pm S_n = a_1 + a_2 + \dots + a_n = \frac{1}{2} (3^2 + 3^3 + 3^4 + \dots + 3^{n+1}) + \frac{3n}{2}$$

故选: ABD.

13. 【答案】 B, C

【解析】由题意,记 $\langle x \rangle$ 表示与实数 x 最接近的整数,且 $k = \langle \sqrt{n} \rangle$,

当 n=1 时,可得 $\sqrt{n}=1$, $\langle \sqrt{n} \rangle =1$,所以 A 不正确;

由
$$|\sqrt{n}-\langle\sqrt{n}\rangle|<rac{1}{2}$$
 ,即 $|\sqrt{n}-k|<rac{1}{2}$,可得 $-rac{1}{2}<\sqrt{n}-k<rac{1}{2}$,

可得 $\sqrt{n} < k + \frac{1}{2}$ 成立, 所以 B 符合题意;

由
$$-\frac{1}{2} < \sqrt{n} - k < \frac{1}{2}$$
 ,可得 $k - \frac{1}{2} < \sqrt{n} < k + \frac{1}{2}$,平方可得 $k^2 - k + \frac{1}{4} < n < k^2 + k + \frac{1}{4}$,

因为 $n \in \mathbb{N} *$, 且 $k^2 - k + \frac{1}{4}$ 不是整数,

其中 k^2-k+1 是 $k^2-k+\frac{1}{4}$ 右侧的最接近的整数,

所以 $n \ge k^2 - k + 1$ 成立, 所以 C 符合题意;

当
$$n=1,2$$
 时, $\langle \sqrt{n} \rangle = 1$,此时 $a_1=a_2=1$;

当
$$n=3,4,5,6$$
 时, $\langle \sqrt{n} \rangle = 2$,此时 $a_3=a_4=a_5=a_6=\frac{1}{2}$;

当
$$n=7,8,9,10,11,12$$
 时, $\langle \sqrt{n} \rangle = 3$,此时 $a_7=a_8=\cdots=a_{12}=\frac{1}{3}$;

当
$$n=13,14,\cdots,20$$
 时, $\langle \sqrt{n} \rangle = 4$,此时 $a_{13}=a_{14}=\cdots=a_{20}=\frac{1}{4}$;

.....

归纳可得数列 $\{a_n\}$ 中,有 2 个 1 , 4 个 $\frac{1}{2}$, 6 个 $\frac{1}{3}$, 8 个 $\frac{1}{4}$, ……

又由 2,4,6,8,… 构成首项为 2, 公差为 2 的等差数列, 可得 $S_n = \frac{n(2+2n)}{2} = n(n+1)$,

令 $n(n+1) \le 2021, n \in N^*$, 解得 n = 44 ,

所以 $S_{2021}=1\times2+\frac{1}{2}\times4+\frac{1}{3}\times6+\cdots+\frac{1}{22}\times44+\frac{1}{23}\times41=88+\frac{41}{23}$,所以 D 不正确.

故答案为: BC.

参考答案

三、填空题

- 14. 【答案】1 或 $-\frac{1}{2}$
- 15. 【答案】 1348

【解析】由斐波那契数列的特点知:从第一项起,每3个数中前两个为奇数后一个偶数,

- $\frac{2021}{3}$ 的整数部分为 673, 余数为 2,
- ∴ 该数列的前 2021 项中共有 673 个偶数, 奇数的个数为 2021 673 = 1348 .

故答案为: 1348

16. 【答案】-999

【解析】由题知, $S_n - S_{n-1} = -n^2$, 则 $S_{n-1} + S_n = -(n+1)^2$.

两式作差得: $a_{n+1}+a_n=(-n+1)^2-(-n^2)=-2n-1$.

整理得 a_{n+1} + $(n+1) = - (a_n+n)$.

所以 $\{a_n+n\}$ 是以 $a_1+1=1022$ 为首项,-1为公比的等比数列.

∴ a_{2021} +2021=1022× (-1) a_{2020} =1022. ∭ a_{2021} =-999,

故答案为: - 999.

17.【答案】-1

【解析】:
$$2S_n - na_n = n \ (n \in \mathbb{N}^*)$$
, $... S_n = \frac{n(a_n + 1)}{2}$,

∴
$$S_1 = a_1 = \frac{a_1 + 1}{2}$$
, 解得 $a_1 = 1$,

$$\therefore S_n = \frac{n}{2} (a_1 + a_n), \therefore \{a_n\}$$
是等差数列,

$$: S_{20} = -360, :: S_{20} = \frac{20(1+a_{20})}{2} = -360,$$

解得 a₂₀+1= - 36, 即 a₂₀= - 37, 維坊高中数学

$$\therefore a_2 = a_1 + d = 1 - 2 = -1.$$

故答案为: -1.

18. 【答案】1 或 8 或 10 或 64 (只需填一个)

【解析】若 $a_1=1$,则 $a_6=2$, $a_5=4$, $a_4=8$ 或 1,

①当 a_4 =8 时, a_3 =16, a_2 =32 或 5,

若 a_2 =32,则 a_1 =64;若 a_2 =5,则 a_1 =10,

②若 a_4 =1 时, a_3 =2, a_2 =4, a_1 =8 或 1,

综上所述,加的值为1或8或10或64,

故答案为: 1或8或10或64(只需填一个).

19. 【答案】83

【解析】:
$$a_{n+1} = \begin{cases} \frac{a_n}{2}, & a_n \end{pmatrix}$$
 偶数 $3a_n + 1, a_n$ 奇数

- ∴当 *a*₆=2 时,则 *a*₅=4,
- ①当 a_5 =4 时, a_4 =1 或 a_4 =8,
- ②若 $a_4=1$ 时,则 $a_3=2$,若 $a_4=8$ 时, $a_3=16$,
- ③若 $a_3 = 2$ 时,则 $a_2 = 4$,若 $a_3 = 16$ 时, $a_2 = 32$ 或 $a_2 = 5$,
- ④若 a_2 =4 时,则 a_1 =8 或 a_1 =1,若 a_2 =32 时,则 a_1 =64,若 a_2 =5 时,则 a_1 =10,
- ∴ 加的值为1或8或10或64,
- ∴ m的所有取值之和为 1+8+10+64=83.

故答案为: 83.

20. 【答案】2026

【解析】由题,
$$S_n = \log_2\left(\frac{1+2}{1+1}\right) + \log_2\left(\frac{2+2}{2+1}\right) + \dots + \log_2\left(\frac{n+2}{n+1}\right)$$

$$= \log_2 \frac{3}{2} + \log_2 \frac{4}{3} + \dots + \log_2 \left(\frac{n+2}{n+1} \right)$$

$$= \log_2 \frac{n+2}{2} = \log_2 (n+2) - \log_2 2 = \log_2 (n+2) - 1.$$

所以,
$$S_{\nu} = \log_{2}(k+2)-1$$
.

潍坊高中数学

因为 S_k 为正整数,所以 $\log_2(k+2)-1>0$,即 $k+2>2 \Rightarrow k>0$.

$$\Rightarrow m = \log_2(k+2)$$
, \emptyset $k = 2^m - 2$.

因为 $k \in [1,2021]$,所以 $2^m \in [3,2023]$.

因为 $y = 2^x$ 为增函数,且 $2^1 = 2, 2^2 = 4, \dots, 2^{10} = 1024, 2^{11} = 2048$

所以 $m \in [2,10]$.

所以所有"好数"的和为
$$2^2 - 2 + 2^3 - 2 + \dots + 2^{10} - 2 = \frac{2^2 - 2^{10} \times 2}{1 - 2} - 2 \times 9 = 2026$$
.

故答案为: 2026.

21. 【答案】88

【解析】

88 把
$$a_n = S_n - S_{n-1}$$
带人条件可求得, $S_n = \sqrt{n}$. $\frac{1}{S_n} = \frac{1}{\sqrt{n}} = \frac{2}{2\sqrt{n}}$,又 $\frac{2}{2\sqrt{n}} > \frac{2}{\sqrt{n} + \sqrt{n+1}} = 2(\sqrt{n+1} - \sqrt{n})$,所以, $\frac{1}{S_1} + \frac{1}{S_2} + \cdots$ $+ \frac{1}{S_2} > 2(\sqrt{2026} - 1) > 88$,又 $\frac{2}{2\sqrt{n}} < \frac{2}{\sqrt{n} + \sqrt{n-1}} = 2(\sqrt{n} - \sqrt{n-1})(n \ge 2)$, $\therefore \frac{1}{S_1} + \frac{1}{S_2} + \cdots + \frac{1}{S_2025} < 1 + 2(\sqrt{2025} - 1) = 89$. 由上可得答案为 88.

四、解答题

22. 【解析】 (1) 等差数列 $\{a_n\}$ 的前n项和为 S_n , 且满足 $a_2=4$, $S_n=30$,

设首项为 a1, 公差为 d,

所以
$$\begin{cases} a_1 + d = 4 \\ 5a_1 + \frac{5 \times 4}{2} d = 30 \end{cases}$$
 , 解得
$$\begin{cases} a_1 = 2 \\ d = 2 \end{cases}$$
 , 故 $a_n = 2n$;

(2)由于
$$b_n = \frac{2}{a_n^2 - 1} = \frac{1}{2n - 1} - \frac{1}{2n + 1}$$
,所以 $T_n = 1 - \frac{1}{3} + \frac{1}{3} - \frac{1}{5} + \dots + (\frac{1}{2n - 1} - \frac{1}{2n + 1}) = 1 - \frac{1}{2n + 1} = \frac{2n}{2n + 1}$.

23. 【解析】(1) 由题意得: $a_1 = 2$, $a_2 = 4$, $a_3 = 8$,

: . 等比数列
$$\{a_n\}$$
的公比 $q = \frac{4}{2} = 2$, : $a_n = 2 \times 2^{n-1} = 2^n$.

$$\nabla b_n = 2\log_2 a_n = 2\log_2 2^n = 2n$$
, $\therefore b_n = 2n$.

(2)
$$\pm$$
 (1) \pm (2) \pm (3) \pm (3) \pm (4) \pm (2) \pm (3) \pm (3) \pm (4) \pm (4) \pm (5) \pm (6) \pm (7) \pm (7) \pm (8) \pm (8) \pm (8) \pm (9) \pm (1) \pm (1) \pm (1) \pm (1) \pm (2) \pm (1) \pm (2) \pm (2) \pm (2) \pm (2) \pm (2) \pm (3) \pm (2) \pm (2) \pm (3) \pm (3) \pm (4) \pm (4) \pm (4) \pm (5) \pm (5) \pm (6) \pm (7) \pm (7) \pm (8) \pm (8)

$$\therefore T_n = \frac{1}{2} \times \left(1 - \frac{1}{3} + \frac{1}{3} - \frac{1}{5} + \dots + \frac{1}{2n-1} - \frac{1}{2n+1} \right) = \frac{1}{2} \left(1 - \frac{1}{2n+1} \right),$$

$$: n \in \mathbb{N}^*, : \frac{1}{2n+1} > 0, : 1 - \frac{1}{2n+1} < 1, : T_n = \frac{1}{2} \left(1 - \frac{1}{2n+1} \right) < \frac{1}{2}.$$

24. 【解析】(1) 证明: 由 $a_{n+2} = a_{n+1} + 2a_n$, 得 $b_{n+1} = a_{n+2} + a_{n+1} = 2(a_{n+1} + a_n) = 2b_n$,

参考答案 维拉高中数学 VFMATH

又 $b_1 = a_1 + a_2 = 2 \neq 0$, 所以 $\{b_n\}$ 是以2为首项,2为公比的等比数列,

(2) 由(1)知,
$$T_{n} = \frac{2-2^{n} \times 2}{1-2} = 2(2^{n}-1),$$

$$\frac{b_{n+1}}{T_{n} \cdot T_{n+1}} = \frac{T_{n+1} - T_{n}}{T_{n} \cdot T_{n+1}} = \frac{1}{T_{n}} - \frac{1}{T_{n+1}} = \frac{1}{2} \left(\frac{1}{2^{n}-1} - \frac{1}{2^{n+1}-1} \right),$$

$$\frac{b_{2}}{T_{1} \cdot T_{2}} + \frac{b_{3}}{T_{2} \cdot T_{3}} + \dots + \frac{b_{n+1}}{T_{n} \cdot T_{n+1}}$$

$$= \frac{1}{2} \left[\left(\frac{1}{2^{1}-1} - \frac{1}{2^{2}-1} \right) + \left(\frac{1}{2^{2}-1} - \frac{1}{2^{3}-1} \right) + \dots + \left(\frac{1}{2^{n}-1} - \frac{1}{2^{n+1}-1} \right) \right] = \frac{1}{2} \left(1 - \frac{1}{2^{n+1}-1} \right).$$

$$\frac{1}{\left[\frac{1}{2^{n+1}-1} \right]} > 0 \qquad \lim_{n \to \infty} \frac{b_{2}}{T_{1} \cdot T_{2}} + \frac{b_{3}}{T_{2} \cdot T_{3}} + \dots + \frac{b_{n+1}}{T_{n} \cdot T_{n+1}} < \frac{1}{2}$$

25. 【解析】解: (1) 数列 $\{a_n\}$ 的前 n 项和为 S_n ,且满足 $a_1=1$, $2S_n=na_{n+1}$,①

当 n=1 时,解得 $a_2=2$,

当
$$n \ge 2$$
 时, $2S_{n-1} = (n-1) a_n$,②

① - ②得:
$$\frac{a_{n+1}}{n+1} = \frac{a_n}{n}$$
, $t \nmid \frac{a_n}{n} = \frac{a_2}{2} = 1$,

所以 $a_n = n$ (首项符合通项),

故 $a_n = n$.

(2) 由于 $b_n b_{n+1} = 2^n$, $n \in \mathbb{N}*$,

所以
$$b_{n+1}b_{n+2}=2^{n+1}$$
,

所以
$$\frac{b_{n+2}}{b_n} = 2$$
 (常数),

由于 $b_1=1$, 所以 $b_2=2$,

所以数列 {b_n} 的偶数项为以 2 为首项, 2 为公比的等比数列;

所以构造新数列 $\{c_n\}$: a_1 , b_2 , a_3 , b_4 , a_5 , b_6 , …,

 $\{c_n\}$ 的前 2n 项的和:

$$T_{2n} = (a_1 + a_3 + \ldots + a_{2n-1}) + (b_2 + b_4 + \ldots + b_{2n}) = \frac{n(1 + 2n - 1)}{2} + \frac{2 \times (2^n - 1)}{2 - 1} = 2^{n+1} + n^2 - 2.$$

26. 【解析】解: (1) 设等差数列 $\{a_n\}$ 的公差为 d,等比数列 $\{b_n\}$ 的公比为 g,

由 $a_1 = b_2 = 2$, $S_5 = 30$, $b_4 + 2$ 是 b_3 与 b_5 的等差中项,

可得 $b_1q=2$, $5\times 2+10 d=30$, $2(b_4+2)=b_3+b_5$, 即 $2(b_1q^3+2)=b_1q^2+b_1q^4$, 解得 d=2, $b_1=1$, q=2, 则 $a_n=2+2(n-1)=2n$; $b_n=2^{n-1}$;

(2) $a_{60}=120$,所以数列 $\{a_n\}$ 前 60 项中与数列 $\{b_n\}$ 的公共项共有 6 项,且最大公共项为 $b_n=2^6=64$,

 $\nabla a_{66} = 132, b_8 = 2^7 = 128,$

所以
$$T_{60} = S_{67} - (2+2^2+...+2^7) = 134+\frac{1}{2} \times 67 \times 66 \times 2 - \frac{2(1-2^7)}{1-2}$$

=4556 - 254 = 4302.

27. 【解析】证明: (1) 当 n=2 时, $S_3+S_1=2S_2+1$,

即 $a_1+a_2+a_3+a_1=2$ (a_1+a_2) +1, 得 $a_3=3$,

当 $n \ge 2$ 时,因为 $S_{n+1} + S_{n-1} = 2S_n + 1$,所以 $S_{n+2} + S_n = 2S_{n+1} + 1$,

两式相减得 $a_{n+2}+a_n=2a_{n+1}$,

所以
$$a_{n+2}$$
 - a_{n+1} = a_{n+1} - a_n ,

所以 $\{a_{n+1} - a_n\}$ 是以 $a_3 - a_2$ 为首项,以1为公比的等比数列;

$$a_3 - a_2 = 1$$
,

所以 a_{n+1} - a_n =1,

所以
$$a_n = \begin{cases} 2, & n=1, \\ n, & n \ge 2. \end{cases}$$

(2) 数列 $\{a_n\}$ 前 100 项为 2, 2, 3, 4, 5, …, 100,

所以数列 $\{c_n\}$ 前 100 项含有数列 $\{2^{a_n}\}$ 的项为 2^2 , 2^3 , 2^4 , 2^5 , 2^6 共六项,

所以
$$T_n = 2^2 + 2^3 + 2^4 + 2^5 + 2^6 + 2 + 2 + 3 + 4 + 5 + \dots + 94 = 128 + 2 + \frac{(2+94) \times 93}{2} = 4594$$
.

28. 【解析】 解: 选①: $:: 2S_n + 1 = 3^n$, 当 $n \ge 2$ 时, $2S_{n-1} + 1 = 3^{n-1}$,

两式相减得
$$2a_n=2\cdot 3^{n-1}$$
 , \therefore $a_n=3^{n-1}(n\geq 2)$,

又:
$$a_1 = 1$$
 满足上式,

故
$$a_n = 3^{n-1}$$
 ,

$$T_n = b_1 + b_2 + \dots + b_n = (\frac{1}{3})^0 + (\frac{1}{3})^1 + (\frac{1}{3})^2 + \dots + (\frac{1}{3})^{n-1} + (1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \dots + \frac{1}{n} - \frac{1}{n+1}) = \frac{1 - (\frac{1}{3})^n}{1 - \frac{1}{3}} + \dots + \frac{1}{n} + \frac{1}{n+1}$$

$$1 - \frac{1}{n+1} = \frac{5}{2} - \frac{1}{2} \left(\frac{1}{3}\right)^{n-1} - \frac{1}{n+1} ,$$

因为
$$\frac{1}{2}(\frac{1}{3})^{n-1} > 0$$
 , $\frac{1}{n+1} > 0$, 所以 $T_n < \frac{5}{2}$.

参考答案

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问: https://d.book118.com/18701601016
4006131