N\

Fr... 10fer

Advanced Audio Coding Decoder
Library

MPEG-2 and MPEG-4

AAC Low-Complexity (AAC-LC),
High-Efficiency AAC v2 (HE-AAC v2),
AAC Low-Delay (AAC-LD), and

AAC Enhanced Low-Delay (AAC-ELD)

decoder

Fraunhofer Institut Integrierte Schaltungen IIS,
Fraunhofer Institute for Integrated Circuits IIS
http://www.iis.fraunhofer.de/amm

Disclaimer

Information in this document is subject to change without notice. Companies, names, and data used in examples
herein are fictitious unless otherwise noted. Product and corporate names may be trademarks or registered trademarks
of other companies. They are used for explanation only, with no intent to infringe. All rights reserved. NO part
of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including
photocopying and microfilm, without permission in writing from the publisher.

Revision 2.5.7 , August 15, 2013

Contents

1 Introduction 1
1.1 Scope e e e e e 1

1.2 Decoder Basics e 1

2 Library Usage 3
2.1 APIDescription o e e e e e 3

2.2 Calling Sequence i i e e e e e e e e e e 3

2.3 Buffer System e e e e e e e e e e e 4

3 Decoder audio output 7
3.1 Obtaining channel mapping informationl 7

3.2 Changing the audio output format L oL 7

3.3 Channel mapping examples L. e 7
330 StEreoo e e 8

332 Surround 5.1 8

333 ARIBcodingmode 2/1 e e e 9

4 Class Index 11
4.1 ClassList o o e e e e e 11

5 File Index 13
5.1 FileList o oo e e e e 13

6 Class Documentation 15
6.1 CStreamlInfo Struct Reference L 15
6.1.1 Detailed Description o 15

6.1.2 Member Data Documentation oL oo 16

6.1.2.1 aacNumChannels 16

6.1.2.2 aacSampleRate 16

6.1.2.3 aacSamplesPerFrame, 16

ii CONTENTS
6.1.2.4 a0t e 16

6.1.25 bitRate 16

6.1.2.6 channelConfig 16

6.1.2.7 epConfig o e e 16

6.1.2.8 exXtAOt e 16

6.1.2.9 extSamplingRate L 16
6.1.2.10 flags L e e 16
6.1.2.11 frameSize 17
6.1.2.12 numBadAccessUnits. 17
6.1.2.13 numBadBytes 17
6.1.2.14 numChannels 17
6.1.2.15 numLostAccessUnits 17
6.1.2.16 numTotalAccessUnits 17
6.1.2.17 numTotalBytes e e e 17
6.1.2.18 pChannellndices 17
6.1.2.19 pChannelType 17
6.1.220 profile 17
6.1.2.21 sampleRate 18

7 File Documentation 19
7.1 aacdecoder_lib.h File Reference 19
7.1.1 Detailed Description e 22
7.1.2 Define Documentation e 22
7.1.2.1 AACDEC_CLRHIST 22

7.1.22 AACDEC_CONCEAL 23

7.123 AACDEC_FLUSH 23

7.1.24 AACDEC_INTR it 23

7.1.2.5 IS_DECODE_ERROR 23

7.1.2.6 IS_INIT_ERROR 23

7.1.277 IS_OUTPUT_VALID it 23

7.1.3 Typedef Documentation 23
7.1.3.1 HANDLE_AACDECODER 23

7.1.4 Enumeration Type Documentation 23
7.141 AAC_DECODER_ERROR 23

7.142 AACDEC_PARAM 25

7.1.5 Function Documentation Lo . 27

7.1.5.1 aacDecoder_AncDataGet 27

CONTENTS iii
7.1.5.2 aacDecoder_AncDatalnit 27
7.1.5.3 aacDecoder Close e 27
7.1.54 aacDecoder_ConfigRaw, 28
7.1.5.5 aacDecoder_DecodeFrame 28
7.1.5.6 aacDecoder_Fill 28
7.1.5.7 aacDecoder_GetFreeBytes 29
7.1.5.8 aacDecoder_GetLibInfo oL 29
7.1.59 aacDecoder_GetStreamInfo, 29
7.1.5.10 aacDecoder_Open e 30
7.1.5.11 aacDecoder_SetParam 30

Chapter 1

Introduction

1.1 Scope

This document describes the high-level interface and usage of the ISO/MPEG-2/4 AAC Decoder library
developed by the Fraunhofer Institute for Integrated Circuits (IIS). Depending on the library configura-
tion, it implements decoding of AAC-LC (Low-Complexity), HE-AAC (High-Efficiency AAC, vl and v2),
AAC-LD (Low-Delay) and AAC-ELD (Enhanced Low-Delay).

All references to SBR (Spectral Band Replication) are only applicable to HE-AAC and AAC-ELD versions
of the library. All references to PS (Parametric Stereo) are only applicable to HE-AAC v2 versions of the
library.

1.2 Decoder Basics

This document can only give a rough overview about the ISO/MPEG-2 and ISO/MPEG-4 AAC audio
coding standard. To understand all the terms in this document, you are encouraged to read the following
documents.

* ISO/IEC 13818-7 (MPEG-2 AAC), which defines the syntax of MPEG-2 AAC audio bitstreams.

* ISO/IEC 14496-3 (MPEG-4 AAC, subpart 1 and 4), which defines the syntax of MPEG-4 AAC audio
bitstreams.

* Lutzky, Schuller, Gayer, Kramer, Wabnik, "A guideline to audio codec delay", 116th AES Conven-
tion, May 8§, 2004

MPEG Advanced Audio Coding is based on a time-to-frequency mapping of the signal. The signal is
partitioned into overlapping portions and transformed into frequency domain. The spectral components are
then quantized and coded.

An MPEG2 or MPEG4 AAC audio bitstream is composed of frames. Contrary to MPEG-1/2 Layer-3
(mp3), the length of individual frames is not restricted to a fixed number of bytes, but can take on any
length between 1 and 768 bytes.

Introduction

Chapter 2

Library Usage

2.1 API Description

All API header files are located in the folder /include of the release package. They are described in detail
in this document. All header files are provided for usage in C/C++ programs. The AAC decoder library
API functions are located at aacdecoder_lib.h.

In binary releases the decoder core resides in statically linkable libraries called for example libAACdec.a,
(Linux) or FDK_aacDec_lib (Microsoft Visual C++).

2.2 Calling Sequence

For decoding of ISO/MPEG-2/4 AAC or HE-AAC v2 bitstreams the following sequence is mandatory. In-
put read and output write functions as well as the corresponding open and close functions are left out, since
they may be implemented differently according to the user’s specific requirements. The example imple-
mentation in main.cpp uses file-based input/output, and in such case call mpegFileRead_Open() to open an
input file and to allocate memory for the required structures, and the corresponding mpegFileRead_Close()
to close opened files and to de-allocate associated structures. mpegFileRead_Open() tries to detect the bit-
stream format and in case of MPEG-4 file format or Raw Packets file format (a Fraunhofer IIS proprietary
format) reads the Audio Specific Config data (ASC). An unsuccessful attempt to recognize the bitstream
format requires the user to provide this information manually (see CommandLineUsage). For any other
bitstream formats that are usually applicable in streaming applications, the decoder itself will try to syn-
chronize and parse the given bitstream fragment using the FDK transport library. Hence, for streaming
applications (without file access) this step is not necessary.

1. Call aacDecoder_Open() to open and retrieve a handle to a new AAC decoder instance.

aacDecoderInfo = aacDecoder_Open (mpegFileRead_GetTransportType (hDataSrc), nrOfL
ayers) ;

2. If out-of-band config data (Audio Specific Config (ASC) or Stream Mux Config (SMC)) is available,
call aacDecoder_ConfigRaw() to pass it to the decoder and before the decoding process starts. If this
data is not available in advance, the decoder will get it from the bitstream and configure itself while
decoding with aacDecoder_DecodeFrame().

3. Begin decoding loop.

4 Library Usage

do {

4. Read data from bitstream file or stream into a client-supplied input buffer ("inBuffer" in main.cpp).
If it is very small like just 4, aacDecoder_DecodeFrame() will repeatedly return AAC_DEC_NOT_-
ENOUGH_BITS until enough bits were fed by aacDecoder_Fill(). Only read data when this buffer
has completely been processed and is then empty. For file-based input execute mpegFileRead_Read()
or any other implementation with similar functionality.

5. Call aacDecoder_Fill() to fill the decoder’s internal bitstream input buffer with the client-supplied
external bitstream input buffer.

aacDecoder_Fill (aacDecoderInfo, inBuffer, bytesRead, bytesValid);

6. Call aacDecoder_DecodeFrame() which writes decoded PCM audio data to a client-supplied buffer.
It is the client’s responsibility to allocate a buffer which is large enough to hold this output data.

ErrorStatus = aacDecoder_DecodeFrame (aacDecoderInfo, TimeData, OUT_BUF_SIZE,
flags);

If the bitstream’s configuration (number of channels, sample rate, frame size) is not known in ad-
vance, you may call aacDecoder_GetStreamInfo() to retrieve a structure containing this information
and then initialize an audio output device. In the example main.cpp, if the number of channels or
the sample rate has changed since program start or since the previously decoded frame, the audio
output device will be re-initialized. If WAVE file output is chosen, a new WAVE file for each new
configuration will be created.

7. Repeat steps 5 to 7 until no data to decode is available anymore, or if an error occured.

8. Call aacDecoder_Close() to de-allocate all AAC decoder and transport layer structures.

2.3 Buffer System

There are three main buffers in an AAC decoder application. One external input buffer to hold bitstream
data from file I/O or elsewhere, one decoder-internal input buffer, and one to hold the decoded output PCM
sample data, whereas this output buffer may overlap with the external input buffer.

The external input buffer is set in the example framework main.cpp and its size is defined by IN_BUF_-
SIZE. You may freely choose different sizes here. To feed the data to the decoder-internal input buffer, use
the function aacDecoder_Fill(). This function returns important information about how many bytes in the
external input buffer have not yet been copied into the internal input buffer (variable bytesValid). Once the
external buffer has been fully copied, it can be re-filled again. In case you want to re-fill it when there are
still unprocessed bytes (bytesValid is unequal 0), you would have to additionally perform a memcpy(), so
that just means unnecessary computational overhead and therefore we recommend to re-fill the buffer only
when bytesValid is 0.

2.3 Buffer System 5

bytesRead, validBytes

| Full input buffer |

used bytes bytesValid

—

if bytesValid == 0,
then fill it again

Decoding ...

Empty input buffer

| |
| |
| | |
| |
| |

Figure 2.1: Lifecycle of the external input buffer
The size of the decoder-internal input buffer is set in tpdec_lib.h (see define TRANSPORTDEC_INBUF_-
SIZE). You may choose a smaller size under the following considerations:

* each input channel requires 768 bytes

« the whole buffer must be of size 2”'n
So for example a stereo decoder:
TRANSPORTDEC_INBUF_SIZE = 2% 768 = 1536 => 2048

tpdec_lib.h and TRANSPORTDEC_INBUF_SIZE are not part of the decoder’s library interface. Therefore
only source-code clients may change this setting. If you received a library release, please ask us and we
can change this in order to meet your memory requirements.

Library Usage

Chapter 3

Decoder audio output

3.1 Obtaining channel mapping information

The decoded audio output format is indicated by a set of variables of the CStreamInfo structure. While
the members sampleRate, frameSize and numChannels might be quite self explaining, pChannelType and
pChannellndices might require some more detailed explanation.

These two arrays indicate what is each output channel supposed to be. Both array have CStream-
Info::numChannels cells. Each cell of pChannelType indicates the channel type, described in the enum
AUDIO_CHANNEL_TYPE defined in FDK_audio.h. The cells of pChannellndices indicate the sub index
among the channels starting with 0 among all channels of the same audio channel type.

The indexing scheme is the same as for MPEG-2/4. Thus indices are counted upwards starting from the
front direction (thus a center channel if any, will always be index 0). Then the indices count up, starting
always with the left side, pairwise from front toward back. For detailed explanation, please refer to ISO/IEC
13818-7:2005(E), chapter 8.5.3.2.

In case a Program Config is included in the audio configuration, the channel mapping described within it
will be adopted.

In case of MPEG-D Surround the channel mapping will follow the same criteria described in ISO/IEC
13818-7:2005(E), but adding corresponding top channels to the channel types front, side and back, in order
to avoid any loss of information.

3.2 Changing the audio output format

The channel interleaving scheme and the actual channel order can be changed at runtime through the param-
eters AAC_PCM_OUTPUT_INTERLEAVED and AAC_PCM_OUTPUT_CHANNEL_MAPPING. See
the description of those parameters and the decoder library function aacDecoder_SetParam() for more de-
tail.

3.3 Channel mapping examples

The following examples illustrate the location of individual audio samples in the audio buffer that is passed
to aacDecoder_DecodeFrame() and the expected data in the CStreamInfo structure which can be obtained
by calling aacDecoder_GetStreamInfo().

PLEAB AR SRR TS, AW RSB —FEHNE.
BERREE4A, BiA: https://d. book118. com/23705516416
0006144

https://d.book118.com/237055164160006144
https://d.book118.com/237055164160006144

