第一章 PPP 协议简介:

1.1.1 PPP 封装

PPP 封装格式如下,其在链路上从左传至右

地址FF	控制 03	协议8或	信息	填充
		16 位		

1.1.1.1 协议域

TCP/IP

协议域是一或两个八位位组, 其值标识了封装在数据包里信息域的内容为哪一个协议的数据报,最新的协议域的类型值在最近的 RFC1700 "Assigned Numbers"可见到,下面为其中一部分值的定义:

值(16进制)	协议名
C021	链路控制协议(LCP)
C023	口令认证协议 (PAP)
C025	链路质量报告(LQR)
C223	握手认证协议 (CHAP)
C02B	带宽分配控制协议(BACP)
CO2D	带宽分配协议(BAP)
003D	多链路点到点协议(MP)
8021	IP控制协议(IPCP)
0021	IP
002D	Van Jacobson Compressed
/	

如果要开发新的协议,必须向 IANA (Internet Assigned Numbers Authority) 获得一个号码。

1.1.1.2 信息域

信息域为零或多个八位位组, 其内容为在协议域中指定协议的数据报,信息域的最大长度(包括填充部分,但不包括协议域),称为最大接收单元长度(MRU),默认为 1500个八位位组,但 PPP 协议可通过协商来确定 MRU 的值。

1.1.1.3 填充域

在传输时,信息域长度可能达不到 MRU 值,此时,在信息域之后 须加上填充域, 以使信息域加填充域长度达到 MRU 值,各个协议须负 责将填充域与真正的信息域区分开来。

1.1.2 PPP 链路操作

可将 PPP 链路通信分成 5个阶段,未通、建立、认证、连通、终止阶段。各个阶段关系如下:

1.1.2.1 未通阶段

链路最初及最终均处于该阶段, 当一个外部事件指示物理层已准备好,可被链路层使用时, PPP 进入链路建立阶段。

1.1.2.2建立阶段

在该阶段,链路交换一些配置包以确定配置数据。

1.1.2.3 认证阶段

配置确定以后,就进入了认证阶段,在该阶段,一方要求另一方

给出认证信息,以便确认对方是合法的,允许对方与本方通信。

1.1.2.4 连通阶段

认证通过以后,链路就进入连通阶段,在该阶段达到开放状态 (0 PENEDSTATE)后,上层协议可通过本链路进行通信。所需注 意的是,该阶段对于每一控制协议,各自单独进行打开过程,某一控 制协议 OPENED ,只能使该控制协议所对应的上层协议可通过本链 路进行通信。

1.1.2.5 终止阶段

PPP 可在任何时候终止链路,这可能由于认证失败,链路的质量要求达不到,空闲时间计数器超时,管理层要求关闭等原因引起。

1.1.3 LCP 选项协商自动机

1.1.3.1 状态

状态 状态描述

- 0 Initial 态 低层不可用(Down 态),高层无 Open 发给信息
- 1 Starting态 低层不可用 (Down 态), 高层发出 Open (是 Initial 的 Open 对应态)
- 2 Closed 态 低层可用(Up 态),高层无 Open 发本层
- 3 Stopped 态 低层可用 (Up 态),本层已收到 Open,且又发出了tl事件,或收到 Terminate_Ack 事件(是 Closed 的 Open 对应态)
- 4 Closing 态 本层发出了 Terminate_Request 试图终止连接,还未收 Terminate_Ack,计时器处于工作状态
- 5 Stopping 态 是 Closing 的 Open 对应态
- 6 Request_Se 发出 Configure_Request,未收到 Configure_Ack, nt态计时器处于工作状态
- 7 Ack_Receiv Configure_Request 已发出, Configure_Ack 也已收ed 态到, Configure_Ack 未发出,计时器处于工作状态
- 8 Ack_Sent 态 已发出 Configure_Request和 Configure_Ack, 还未收到 Configure_ack, 计时器处于工作状态
- 9 Opened 态 Configure_Ack已发送,也已接收到对方发来的 Configure_Ack,计时器不工作

1.1.3.2 收到事件

	Event	Description			
1	UP	低层指示它已准备好接收或发送数据包			
2	DOWN	低层指示它已不能发送或接收数据包			
3	OPEN	高层要求建立一条链路			
4	CLOSE	高层指示关闭一条链路			
5	TO+	计时器超时,还有重发机会			
6	TO-	计时器超时,已无重发机会			
7	RCR+	收到 Configure_Request,并且其配置数据是可接受的			
8	RCR-	收到 Configure_Request,并且其配置数据是不可接受			
		的			
9	RCA	收到 Configure_Ack			
10	RCN	收到 Configure_Nak 或收到 Configure_Reject			
11	RTR	收到 Terminate_Request			

12 RTA 收到 Terminate Ack 收到不能解释的包(Receive_Unknown_Code) 13 RUC 收到 Code Reject 或 Protocol Reject ,但拒绝的值可 14 Rx j+ 接受,不引起本链路断开 收到 Code Reject 或 Protocol Reject ,且其结果是严 15 Rx j-重的, 使本链路断开 收到 Echo_Request 或 Echo_Reply 或 Discard_Request 16 RXR 1.1.3.3 本层需做动作 1 tlu: This_Layer_Up 告知上层本层已进入 Opened 态 2 tld: This Layer Down 告知上层本层已离开 Opened 态 : 告知上层本层已进入 Staring 态 tls This_Layer_started : 告知上层本层已进入 Initial 态,Closed 4 tlf This_Layer_Finished 或 Stopped 态 : 初始化重启动计数器 irc Initialize_Restart_C ount 将重启动计数器置零 zrc Zero_Restart_Count 发出配置请求 scr Send_Configure_Requs et 发出 Configure_Ack sca Send_Configure_Ack 发 Ш 或 9 Configure_Nak scn Send_Configure_Nak Configure_Reject : 发出 Terminate_Request 10 str Send_Terminate_Reque st 发出 Terminate Ack 11 sta Send Terminate Ack 12 scj: Send_Code_Reject 发出 Code_Reject 13 ser: Send_Echo_Reply 发出 Echo_Reply 1.1.3.4 状态转换图 1 2 3 4 5 6 7 8 9 一个工厂

事件	Initi	Stari	Close	Stopp	e Clos	e Stopp	∲i Req_	seAck_R	cvAck_	se0pen ¢
	al	ng	d	d	ing	ng	nt	d	nt	
Up	2	irc, s er/6	_	_	•	_	<u> </u>	_	_	
Down	_	_	0	tIs/I	0	1	1	1	1	tId/I
0pent	ls/1	1	icr, s er/6	3r	5r	5r	6	7	8	9r
Close	0	tlf/0	2	2	4	4	irc, st	irc, stı	rirc, st	tld, ir
							r/4	/4	r/4	c, str/4
T0+	_	_		_	scr/4	scr/5	scr/6	scr/6	scr8	
ТО	_	_	_	_	t1f/2	t1f/3	t1f/3p	tlf/3p	tlf/3p	_
RCR +		-	sta/2	irc, so	; 4	5	sca/8	sca, tlı	ı sca/8	tld, sc
				t, sca/8				/9		r, sca/8
RCR -	- —	<u>—</u>	sta/2	irc, so	2 4	5	scr/6	scr/7	scr/6	tld, sc
				r,						r,
DCA	:			scn/6		-	/7	/ C		scr/6
RCA	_	_	sta/2	sta/3	4	5	irc/7	SCT/OX	u/9	tld, so r/6x
RCN	<u> </u>	<u> </u>	sta/2	sta/3	4	5	irc so	c scr/6x		
ItOIt			sta, z	συ σ	1	O	r/6	J BOI / OX	r/8	r/
DWD			/0	/0	. / 4	. /=	/0	. /0	/0	6x
RTR	_	_	sta/2	sta/3	sta/4	sta/5	sta/6	sta/6	sta/6	tld, zr c,
<u>.</u> DТ 1			9	9	+1£/9	+1£/9	· 6	G	0	sta/5
RTA	-		2	3	L11/ <i>2</i>	t1f/2	6	6	8	tld, sc r/6
RUC	<u>-</u>	_	scj/2	scj/3	scj/4	scj/5	scj/6	scj/7	scj/8	scj/9
Rxj+	<u> </u>	<u>—</u>	2	3	4	5	6	7	8	9
Rxj-	<u>—</u>	_	tlf/w	t1f/3	t1f/2	t1f/3	t1f/3	t1f/3	t1f/3	tld, ir
										c, str/5
RXR		_	2	3	4	5	6	7	8	scr/9

p: 被动选项,等待对方发配置请求

r: 重新启动选项,上层希望对一些参数重新协商

x: 交叉连接, 多点希望与本点相连

1.1.4 LCP 包格式

共有三种类型的 LCP 包

链路配置包,用于建立和配置链路

(Configure_Request, Configure_Ack, Configure_Nak 及 Configure_Reject)

链路终止包,用于终止一条链路

链路维护包,用于管理和监测链路

(Terminate_Request, Terminate_Ack)

(Code_Reject, Protlcol_Reject, Echo_Request, Echo_Reply 及 Discard_Request)

LCP 包封装在 PPP 信息域中,而 PPP 的协议域为 C021 (链路控制协议)

LCP 包的格式如下:

代码 CODE	标识 ID	长度 LEN	数据 DATA
一个八位	一个八位位	两个八位位	零或多个八位
位组	组	组	位组

代码:

代码域为一个八位位组,标识了 LCP 包的种类,最新的 LCP 代码值定义在最的 RFC "Assigned Numbers"中,下面为一些代码值的定义:

- 1 Configure_Request
- 2 Configure_Ack
- 3 Configure_Nak

- 4 Configure_Reject
- 5 Terminate_Request
- 6 Terminate_Ack
- 7 Code_Reject
- 8 Protlcol_Reject
- 9 Echo_Requset
- 10 Echo_Reply
- 11 Discard_Request

标识:

标识域为一个八位位组,用于辅助匹配请求(requests)和回答(replys)如果收到一个包含有无效的标识,该包将被丢弃,而不影响 LCP 自动机。

长度:

长度域为二个八位位组, 它表示 LCP 包的长度,包括代码、标识、长度和数据四部分, 该长度不能超过链路规定的 MRU 值,超出长度部分的八位位组被作为填充部分而忽略掉, 如果长度无效(如该值大于MRU),该包将被丢弃。

数据:

数据域为零或多个八位位组, 由长度域的值可知其为几个八位位组, 根据代码域的不同可对数据域的数据作不同的解释。

1.1.5 LCP 配置选项

LCP 配置选项允许对点对点链路的默认特性作协商,修改如果在Configure_Request 包中没有某配置选项,那么就采用默认的配置。

配置选项格式如下:

类型 TYPE	长度 LEN	数据 DATA
一个八位位	一个八位	零或多个八位
组	位组	位组

类型:

类型域为一个八位位组, 指明配置选项的类型, 最新的 LCP 选项 类型值可参见最近的 RFC1700 "Assigned Numbers"下面为一些类型 值的定义:

- 1 保留
- 2 最大接收单元长度(MRU)
- 3 认证协议
- 4 质量协议
- 5 魔数
- 6 协议域压缩
- 7 地址和控制域压缩

长度:

长度域为一个八位位组,指明该配置选项的长度,包括类型、长 度和数据三部分。

数据:

数据域为零或多个八位位组, 包含有配置选项的具体值, 数据域

的格式由类型域决定,如果数据的长度超出了整个包的信息域长度时,整个包将被丢弃。

- 1.2各处理进程的流程图(主流程)
- 1.3 PPPD Daemon 实体

PPPD 是一个后台任务, 当收到网络接口的初始化请求时, PPPD_task 要在 ISL上完成每一个通道的初始化,并登记异步指示回 叫函数 PPPCALLBACK ,在通道初始化后 PPPD_task 完成 PPP 协议协商 以建立数据链路。

当数据从网络接口发向物理接口时,如果链路尚未建立,网络接口将会把数据以消息形式发向 PPPD ,PPPD 则将数据暂存在缓冲队列中,然后启动 LCP 进行链路建立过程, 直到链路层面向网络层 OPENED 以后,再启动缓冲队列数据发送。这就是支持按需拨号 (Dial On Demand)的必然要求。

当数据从物理接口接收,即 DISI Plus接口收到数据包后,全部 递交给 PPPD ,由 PPPD 分析该数据包的信息域为哪一个协议的数据报, 如果是 PPP 协议族的数据报, 则启动相应的协议处理实体, 对该数据 报进行处理,如果是 IP 数据报,则直接递交给 IP 。

当 PPPD 收到或产生各种异常时,将直接以消息方式发送给 Local_Agent 任务。对于不能即时完成的操作,也以异步信息发送方式告知 Local Agent 任务。

PPPcallback(Uid uid, ULONG command, void *arg); 为链路层

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问: https://d.book118.com/24622500301
5011010