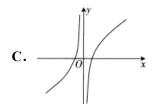
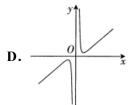
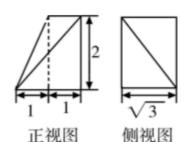

浙江省湖州市重点中学 2023-2024 学年高三 4 月第二次高考模拟数学试题理试题


注意事项:


- 1. 答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
- 2. 回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再 选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
- 3. 考试结束后,将本试卷和答题卡一并交回。
- 一、选择题: 本题共 12 小题, 每小题 5 分, 共 60 分。在每小题给出的四个选项中, 只有一项是符合题目要求的。

2. 函数 $f(x) = |x| - \frac{\ln|x|}{r^2}$ 的图象大致为(


- 3. 已知定义在 $[1,+\infty)$ 上的函数 f(x)满足 f(3x)=3f(x),且当 $1 \le x \le 3$ 时,f(x)=1-|x-2|,则方程
- f(x) = f(2019)的最小实根的值为(
- **A.** 168
- **B.** 249
- **C.** 411 **D.** 561
- 4. 设 $a,b \in (1,+\infty)$,则"a > b "是" $\log_a b < 1$ "的()
- A. 充分而不必要条件

B. 必要而不充分条件

C. 充分必要条件

- D. 既不充分也不必要条件
- 5. 若函数 $f(x) = x \ln x ax^2$ 有两个极值点,则实数 a 的取值范围是 ()
- **A.** $\left(0, \frac{1}{2}\right)$ **B.** $\left(\frac{1}{2}, 1\right)$ **C.** $\left(1, 2\right)$ **D.** $\left(2, e\right)$

- 6. 某几何体的三视图如图所示,则该几何体的最长棱的长为(

- **A.** $2\sqrt{5}$

- **B.** 4 **C.** 2 **D.** $2\sqrt{2}$
- 7. 设全集 U=R,集合 $M = \{x \mid x^2 \le x\}$, $N = \{x \mid 2^x < 1\}$,则 $M \mid \mathbf{\tilde{Q}}_U N =$ ()
- **A.** [0,1]

- **B.** (0,1] **C.** [0,1) **D.** $(-\infty,1]$
- 8. 若实数x,y满足的约束条件 $\begin{cases} y \ge 0 \\ x+y-3 \le 0, \quad \text{则 } z=2x+y \text{ 的取值范围是 (} \end{cases}$
- A. $[4,+\infty)$
- **B.** [0,6] C. [0,4]
- **D.** $[6, +\infty)$
- 9. 设□,□ ∈ (0,1) ∪ (1,+∞),则"□ = □"是"□□□□□□□□□□"的()
- A. 充分不必要条件 B. 必要不充分条件 C. 充要条件
- D. 既不充分也不必要条件
- 10. 若(1+2ai)i=1-bi, 其中 a, b∈R, 则|a+bi|=().
- **A.** $\frac{1}{2}$
- B. $\sqrt{5}$ C. $\frac{\sqrt{5}}{2}$ D. 5
- $11. 已知函数 f(x) = \begin{cases} \log_{\frac{1}{3}} x, x > 0 \\ a \cdot \left(\frac{1}{3}\right)^x, x \leq 0 \end{cases}$,若关于 x 的方程 f[f(x)] = 0 有且只有一个实数根,则实数 a 的取值范围是 (
- **A.** $(-\infty,0)$ U(0,1)

 $e^2 - 1$, $\emptyset a = ($

C. $(-\infty,0)$

- **D.** $(0,1) \cup (1,+\infty)$
- 12. 已知函数 $f(x)=a\left(e^2x-2\ln x\right)(a>0)$, $D=\left\lceil\frac{1}{e},1\right\rceil$ 若所有点 (s,f(t)) , $(s,t\in D)$ 所构成的平面区域面积为

B.
$$\frac{1}{e-2}$$
 C. 1

D.
$$\frac{e}{e-2}$$

- 二、填空题:本题共4小题,每小题5分,共20分。
- 13. 数列 $\{a_n\}$ 满足 $a_1 + 2a_2 + 3a_3 + \mathsf{L} + na_n = 2^n 1(n \in N^*)$,则, $a_n = \underline{\hspace{1cm}}$.若存在 $n \in N^*$ 使得 $a_n \leq \frac{n+1}{n} \cdot \lambda$ 成立,

则实数 λ 的最小值为

- 14. 已知双曲线 $\frac{x^2}{4} \frac{y^2}{12} = 1$ 的右准线与渐近线的交点在抛物线 $y^2 = 2px$ 上,则实数 p 的值为______.
- 15. 已知点 A(0,-1) 是抛物线 $x^2=2py$ 的准线上一点,F 为抛物线的焦点,P 为抛物线上的点,且 |PF|=m|PA|,若 双曲线 C 中心在原点,F 是它的一个焦点,且过 P 点,当 m 取最小值时,双曲线 C 的离心率为 .
- 16. 已知函数 $f(x) = \begin{cases} x^2 + 2x + \frac{1}{4x^2 + 8x}, -2 < x < 0 \\ x^2 + 2x 1, x < -2, x > 0 \end{cases}$,若函数 g(x) = a |f(x)| + 1 有 6 个零点,则实数 a 的取值范围

是 ____

- 三、解答题: 共70分。解答应写出文字说明、证明过程或演算步骤。
- 17. (12 分) 设函数 $f(x) = ax(2 + \cos x) \sin x$, f'(x) 是函数 f(x) 的导数.
- (1) 若 a=1, 证明 f'(x) 在区间 $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ 上没有零点;
- (2) 在 $x \in (0,+\infty)$ 上 f(x) > 0 恒成立,求 a 的取值范围.
- 18. (12 分) 语音交互是人工智能的方向之一, 现在市场上流行多种可实现语音交互的智能音箱.主要代表有小米公司 的"小爱同学"智能音箱和阿里巴巴的"天猫精灵"智能音箱,它们可以通过语音交互满足人们的部分需求,某经销商为了 了解不同智能音箱与其购买者性别之间的关联程度,从某地区随机抽取了 100 名购买"小爱同学"和 100 名购买"天猫精 灵"的人,具体数据如下:

	"小爱同学"智能音箱	"天猫精灵"智能音箱	合计
男	45	60	105
女	55	40	95
合计	100	100	200

- (1) 若该地区共有 13000 人购买了"小爱同学",有 12000 人购买了"天猫精灵",试估计该地区购买"小爱同学"的女性 比购买"天猫精灵"的女性多多少人?
- (2) 根据列联表,能否有95%的把握认为购买"小爱同学"、"天猫精灵"与性别有关?

附:
$$K^2 = \frac{n(ad-bc)^2}{(a+b)(c+d)(a+c)(b+d)}$$

$P(K^2 \ge k)$	0.10	0.05	0.025	0.01	0.005	0.001
k	2.706	3.841	5.024	6.635	7.879	10.828

19. (12 分) 在 \triangle ABC 中,角 A , B , C 的对边分别为 a , b , c , $\left(\sin A + \sin B\right) \left(a - b\right) = c\left(\sin C - \sin B\right)$, $a = 2\sqrt{7}$, 且 $\bigvee ABC$ 的面积为 $6\sqrt{3}$.

(1)求A;

(2)求VABC 的周长.

20. (12 分) 在综合素质评价的某个维度的测评中,依据评分细则,学生之间相互打分,最终将所有的数据合成一个分数,满分 100 分,按照大于或等于 80 分的为优秀,小于 80 分的为合格,为了解学生的在该维度的测评结果,在毕业班中随机抽出一个班的数据.该班共有 60 名学生,得到如下的列联表:

	优秀	合格	总计
男生	6		
女生		18	
合计			60

已知在该班随机抽取 1 人测评结果为优秀的概率为 $\frac{1}{3}$.

- (1) 完成上面的列联表;
- (2) 能否在犯错误的概率不超过 0.10 的前提下认为性别与测评结果有关系?
- (3)现在如果想了解全校学生在该维度的表现情况,采取简单随机抽样方式在全校学生中抽取少数一部分来分析,请你选择一个合适的抽样方法,并解释理由.

附:
$$K^2 = \frac{n(ad - bc)^2}{(a+b)(c+d)(a+c)(b+d)}$$

$P(K^2 \ge k)$	0.25	0.10	0.025
k	1.323	2.706	5.024

21. (12 分) 已知直线 y = x - 1 是曲线 $f(x) = a \ln x$ 的切线.

- (1) 求函数 f(x) 的解析式,
- (2) 若 $t \le 3 4 \ln 2$, 证明:对于任意 m > 0, $h(x) = mx \sqrt{x} + f(x) + t$ 有且仅有一个零点.
- 22. (10 分) 已知函数 $f(x) = \frac{\ln x + ax + 1}{x}$.
 - (1) 若对任意 x > 0, f(x) < 0 恒成立, 求实数 a 的取值范围;
- (2) 若函数f(x) 有两个不同的零点 x_1 , x_2 ($x_1 < x_2$), 证明: $\frac{{x_1}^2}{x_2} + \frac{{x_2}^2}{x_1} > 2$.

参考答案

一、选择题:本题共 12 小题,每小题 5 分,共 60 分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1 、 **A**

【解析】

由降幂公式,两角和的正弦公式化函数为一个角的一个三角函数形式,然后由正弦函数性质求得参数值.

【详解】

$$f(x) = 2\cos^2 x + 2\sqrt{3}\sin x \cos x + m = 1 + \cos 2x + \sqrt{3}\sin 2x + m = 2\sin(2x + \frac{\pi}{6}) + m + 1$$
,

$$x \in \left[0, \frac{\pi}{2}\right]$$
 by, $2x + \frac{\pi}{6} \in \left[\frac{\pi}{6}, \frac{7\pi}{6}\right]$, $\sin(2x + \frac{\pi}{6}) \in \left[-\frac{1}{2}, 1\right]$, $\therefore f(x) \in [m, m+3]$,

由题意 $[m, m+3] = [\frac{1}{2}, \frac{7}{2}]$, $: m = \frac{1}{2}$.

故选: A.

【点睛】

本题考查二倍角公式,考查两角和的正弦公式,考查正弦函数性质,掌握正弦函数性质是解题关键.

2, A

【解析】

根据函数 f(x) 的奇偶性和单调性,排除错误选项,从而得出正确选项。

【详解】

因为f(-x) = f(x), 所以f(x) 是偶函数,排除 C 和 D.

当
$$x > 0$$
时, $f(x) = x - \frac{\ln x}{x^2}$, $f'(x) = \frac{x^3 + 2\ln x - 1}{x^3}$,

令 f'(x) < 0 ,得 0 < x < 1 ,即 f(x) 在 (0,1) 上递减;令 f'(x) > 0 ,得 x > 1 ,即 f(x) 在 $(1,+\infty)$ 上递增.所以 f(x) 在 x = 1 处取得极小值,排除 B.

故选: A

【点睛】

本小题主要考查函数图像的识别,考查利用导数研究函数的单调区间和极值,属于中档题.

3, C

【解析】

先确定解析式求出 f(2019) 的函数值,然后判断出方程 f(x) = f(2019) 的最小实根的范围结合此时的 $f(x) = x - 3^5$,通过计算即可得到答案.

【详解】

当
$$x \ge 1$$
时, $f(3x) = 3f(x)$,所以 $f(x) = 3f(\frac{x}{3}) = 3^2 f(\frac{x}{3^2}) = L = 3^n f(\frac{x}{3^n})$,故当

$$3^n \le x \le 3^{n+1}$$
时, $\frac{x}{3^n} \in [1,3]$,所以 $f(x) = 3^n (1 - \left| \frac{x}{3^n} - 2 \right|) = \begin{cases} 3^{n+1} - x, & x \ge 2 \cdot 3^n \\ x - 3^n, & x < 2 \cdot 3^n \end{cases}$,而

2019
$$\in$$
 [3⁶,3⁷],所以 $f(2019) = 3^6(1 - \left| \frac{2019}{3^6} - 2 \right|) = 3^7 - 2109 = 168$,又当 $1 \le x \le 3$ 时,

f(x) 的极大值为 1,所以当 $3^n \le x \le 3^{n+1}$ 时, f(x) 的极大值为 3^n , 设方程 f(x) = 168

的最小实根为
$$t$$
, $168 \in [3^4, 3^5]$,则 $t \in (3^5, \frac{3^5 + 3^6}{2})$,即 $t \in (243, 468)$,此时 $f(x) = x - 3^5$

令 $f(x) = x - 3^5 = 168$, 得 t = 243 + 168 = 411, 所以最小实根为 411.

故选: C.

【点睛】

本题考查函数与方程的根的最小值问题,涉及函数极大值、函数解析式的求法等知识,本题有一定的难度及高度,是一道有较好区分度的压轴选这题.

4, C

【解析】

根据充分条件和必要条件的定义结合对数的运算进行判断即可.

【详解】

 $a, b \in (1, +\infty),$

 $a > b \Rightarrow \log_a b < 1$,

 $\log_a b < 1 \Rightarrow a > b$

:a>b 是 $\log_a b < 1$ 的充分必要条件,

故选 C.

【点睛】

本题主要考查充分条件和必要条件的判断,根据不等式的解法是解决本题的关键.

5, A

【解析】

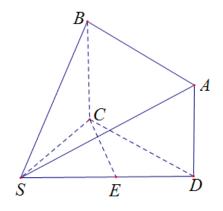
试题分析: 由题意得 $f'(x) = \ln x + 1 - 2ax = 0$ 有两个不相等的实数根,所以 $f''(x) = \frac{1}{x} - 2a = 0$ 必有解,则 a > 0,

且
$$f'\left(\frac{1}{2a}\right) > 0$$
, $: 0 < a < \frac{1}{2}$.

考点: 利用导数研究函数极值点

【方法点睛】函数极值问题的常见类型及解题策略

- (1) 知图判断函数极值的情况.先找导数为 0 的点,再判断导数为 0 的点的左、右两侧的导数符号.
- (2) 已知函数求极值.求 $f'(x) \longrightarrow x$ 方程 f'(x) = 0 的根— \longrightarrow 列表检验 f'(x) 在 f'(x) = 0 的根的附近两侧的符号— \longrightarrow 下结论.
- (3) 已知极值求参数.若函数 f(x) 在点 (x_0, y_0) 处取得极值,则 $f'(x_0) = 0$,且在该点左、右两侧的导数值符号相反.


6, D

【解析】

先根据三视图还原几何体是一个四棱锥,根据三视图的数据,计算各棱的长度.

【详解】

根据三视图可知,几何体是一个四棱锥,如图所示:

由三视图知: |AD|=2 , $|\mathcal{C}|=\sqrt{3}$, |SD|=2,

所以 $|\mathcal{S}| = |\mathcal{D}| = 2$,

所以
$$\left|SA\right| = \sqrt{\left|SD\right|^2 + \left|AD\right|^2} = 2\sqrt{2}, \left|SB\right| = \sqrt{\left|SC\right|^2 + \left|BC\right|^2} = 2\sqrt{2}$$
,

所以该几何体的最长棱的长为 $2\sqrt{2}$

故选: D

【点睛】

本题主要考查三视图的应用,还考查了空间想象和运算求解的能力,属于中档题.

7, A

【解析】

求出集合 M 和集合 N,, 利用集合交集补集的定义进行计算即可.

【详解】

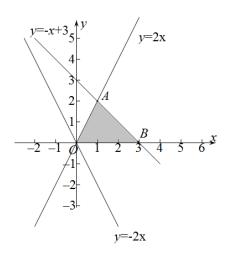
$$M = \{x \mid x^2 \le x\} = \{x \mid 0 \le x \le 1\}, \ N = \{x \mid 2^x < 1\} = \{x \mid x < 0\},$$

$${f \check Q}_{\!\scriptscriptstyle U} N = \left\{ x \,|\, x \ge 0 \right\}$$
 ,

故选: A.

【点睛】

本题考查集合的交集和补集的运算,考查指数不等式和二次不等式的解法,属于基础题.


8, B

【解析】

根据所给不等式组,画出不等式表示的可行域,将目标函数化为直线方程,平移后即可确定取值范围.

【详解】

实数 x,y 满足的约束条件 $\begin{cases} y \ge 0 \\ x+y-3 \le 0 \text{ , 画出可行域如下图所示:} \\ 2x-y \ge 0 \end{cases}$

将线性目标函数 z = 2x + y 化为 y = -2x + z,

则将 y=-2x 平移,平移后结合图像可知,当经过原点 $O\big(0,0\big)$ 时截距最小, $z_{\min}=0$;

当经过B(3,0)时,截距最大值, $z_{\text{max}} = 2 \times 3 + 0 = 6$,

所以线性目标函数 z = 2x + y 的取值范围为[0,6],

故选: B.

【点腈】

本题考查了线性规划的简单应用,线性目标函数取值范围的求法,属于基础题.

9, A

【解析】

根据题意得到充分性,验证 $\Box = 2, \Box = \frac{1}{2}$ 得出不必要,得到答案.

【详解】

 $\square, \square \in (0,l) \cup (l,+\infty)$, 当" $\square = \square$ 时, $\log_{\square} \square = \log_{\square} \square$,充分性;

故选: □.

【点睛】

本题考查了充分不必要条件, 意在考查学生的计算能力和推断能力.

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问: https://d.book118.com/258076002056007004