实验一 位逻辑指令实验

一、实验目的

- 1. 掌握位逻辑指令的使用。
- 2. 掌握位逻辑指令参数的设置。

二、实验内容

梯形图

图 1-1

语句表说明

步序	指令	器件号	说明
1	LD	I0.0	要想激活 Q0.0,常开触点 I0.0 和 I0.1 必须
2	А	I0.1	为接通(闭合)。NOT指令作为一个但向器使
3	=	Q0.0	用,在RUN模式下,Q0.0和Q0.1具有相反
4	NOT		的逻辑状态。
5	=	Q0.1	

1

三. 实验结果

					■ 梯形图OB1 - □	×
		Luca	= 140		ORGANIZATION_BLOCK 主程序:081	^
SIEMENS	-sr RUN	10.0	11.1	• • • • • • • • • • • • • • • • • • •	Network 1 // 网络标题	
仿真	STOP	102	112	002	0.0 10.1 Q0.1	
		10.9	11.9	00.3		
		10,4 10,5	114	004		
SIMATIC		10.6	110	a0.6	SUBROUTINE_BLOCK SBR_0: SBR0	
S7-200		10.7	-	00.7	Network 1 // 网络标题	
SIMATIC S7-200		10.4 10.5 10.6 10.7	114	00.4 00.5 00.6 00.7	SUBROUTINE_BLOCK SBR_0:SBR0 Network 1 // 网络标题 INTERRUPT_BLOCK INT_0:INT0	

实验二 时钟/通讯指令实验

一、实验目的

1. 熟悉读实时时钟指令(TOD₽ 和写实时时钟指令(TOD₩的设置和使用。

2. 熟悉网络读写指令的设置和使用。

二、实验内容

梯形图程序

图 2-1

语句表说明

步序	指令	器件号	说明
1	LD	SM0.1	在第一个扫描周期, 使能 PPI 主站模式,
2	MOVB	2, SMB30	并且清除所有接收和发送缓冲区
3	FILL	+0, VW200 68	

三. 实验结果

E SIMATIC LAD	
2 · [· 3 · + · 4 · + · 5 · + · 6 · + · 7 · + · 8 · + · 9 · + · 10 · + · 11 · + · 12 · + · 13 · + · 14 · + · 15 · + · 18 · + · 17 · + · 18 ·] · 19 · + · 20 · + ·	
	<u>*</u>

		■ 梯形图OB1 — □ ×
SIEMENS <mark>仿真</mark>	SF 10.0 11.0 00.0 RUN 10.1 11.1 0.0.1 STOP 10.2 11.2 0.02 10.3 11.3 0.03 10.4 11.4 0.04	ORGANIZATION_BLOCK 主程序:OB1 ○ 1.0 ○ 1.1 ○ 1.1
		+0 - IN OUT - VW200 08 - N - VW200
		×
MB30 With sign ▼ VW200 With sign ▼ Image: Solution of the sign vector of the sign vec		
Processi 开始	ng state table 停止 关闭	

实验三 比较指令实验

一、实验目的

1. 掌握数值比较的使用方法。

2. 进一步熟悉 PLC的输入。

二、实验内容

梯形图

图 3-1

语句表说明

表 3-1

步序	指令	器件号	说明
1	LD	I0.0	调节模拟调节电位器 0 来改变 SMB28的数
2	LPS		值。当SMB28中的数值小于等于50时,Q0.0
3	AB< =	SMB28 50	输出
4	=	Q0.0	当 SMB28中的数值大于等于 150 时, Q0.1
5	LPP		输出
6	AB> =	SMB28 150	当比较结果为真时,状态指示器点亮。
7	=	Q0.1	

三. 实验结果

SIMATIC LAD								
· · 3 · · · 4 · · · 5 · · · 6 · · · 7 · · · 8 · · · 9 · · · 10 · · · 11 · · · 12 · · · 13 · · · 14 · · · 15 · · · 16 · · • 17 · · · 18 · · · 19 ·								
符号	· 安里类型	数据类型	注释					
	TEMP							
	TEMP							
	TEMP							
	TEMP							
程序注释 网络1 网络标题 网络注释 0.0 SMB <=E 50 SMB SMB <=E <=E <=E <=E <=E <=E	28 9 (28 9 (Q0.0) Q0.1)						
	SIMATIC LAD · 3 · 1 · 4 · 1 · 5 · 1 · 6 · 1 符号 · · · · · · · · · · · · · · · · · · ·	· 3 · 1 · 4 · 1 · 5 · 1 · 6 · 1 · 7 · 1 · 8 · 1 · 7 符号 空里类型 TEMP SMB28 SMB28 SMB28 SMB28 SMB28 SMB28 SMB28 TEMP TEMP TEMP TEMP TEMP TEMP	SIMATIC LAD 3 · 1 · 4 · 1 · 5 · 1 · 6 · 1 · 7 · 1 · 8 · 1 · 9 · 1 · 10 · 1 · 符号 交里类型 数据类型 TEMP SMB28 Q0.0 SMB28 Q0.1 SMB28 SMB28	SIMATIC LAD 3 · · · 4 · · · 5 · · · 6 · · · 7 · · · 8 · · · 9 · · · 10 · · · 11 · · · 12 · · · 13 · · · 14 · · · 15 · · · 16 · · · 17 · · · 18 · 符号 安望类型 数据类型 注释 Image: Contract of the second secon				

实验四 计数/高速计数指令实验

一、实验目的

- 1. 掌握计数器指令的使用和设置
- 2. 了解高速计数器不同的操作模式下,模块的功能。
- 3. 进一步的熟悉 PLC的指令输入。

二、实验内容

梯形图

	10.0	C48
88		

图 4-1

图 4-2 时序图

语句表说明

表 4-1

7

步序	指令	器件号	说明
1	LD	I0.0	IO.0 增计数
2	LD	I0.1	IO.1 减计数
3	LD	10.2	IO.2 将当前值复位为 O
4	CTUD	C48, +4	
5	LD	C48	当当前值=4时,将增/减计数器 C48接通
6	=	Q0.0	

三. 实验结果

		AD				
2 · [. 3 . 1 . 4	1 • • • 5 • • • 6 •	7 8	9 10	11 12 13 14 15 16 17	71 1 1 181 1 191
		符号	安量类型	<u> </u>	注释	
			LIEMP			
	程序注释					
	网络 1	网络标题				
	网络注释					

实验五 脉冲输出指令实验

一、实验目的

1. 掌握脉冲指令的操作。

2. 了解脉冲指令的功能。

3. 进一步的熟悉 PLC的指令输入。

二、实验内容

PWMF生一个占空比变化周期固定的脉冲输出,你可以以微秒或毫秒为单位指定其周期和脉

冲宽度:

1. 周期: 10us 到 65, 535us 或者 2ms 到 65,535ms。

到 65, 535us 或者 0ms到 65,535ms。 2. 脉宽: Ous

图 5-2 脉宽调制 (PWM

如表 5-3 所示,设定脉宽等于周期(使占空比为 100%),输出连续接通。设定脉宽等于 0 (使占空比为 0%),输出断开。

三. 实验结果

E SIMATIC LAD			
2 3 4 5 5 6 7 7 8 9 9 10 10 11	12 · · · 13 · · · · 14 · · · · 15 · · · · 16 · · · 17 · · · · ·	18 19 20 1	
TEMP TEMP TEMP	(土)程		
程序注释 网络注释 100 − T32 − 000 100 − T32 − 000 − 000 100 − T32 − 000 − 000 100 − − − − − − − − − − − − − − − − − −			-
			•
SIEMENS 仿真	SF 10.0 11.0 00.0 RUN 10.1 11.1 00. STOP 10.2 11.2 00.0 10.3 11.3 00.0 10.4 11.4 00.0	■ 样形图OB1 - □ ORGANIZATION_BLOCK 主程序:0B1 Network 1 // 网络标题 1 0.11 0 1.1 0 1.1 0 0 1.1 Network 2	×
SIMATIC S7-200	105 11,5 00,5 105 00,5 10,7 00,5	2 Q0.0 T32 7 IN TON 2 PT 1 ms	
		<	>

SMB 28	Ţ <u></u>	[0]
SMB 29	Ţ <u></u>	0]

实验六 逻辑操作指令实验

一、实验目的

- 1. 掌握逻辑操作指令的设置。
- 2. 熟悉逻辑操作指令在程序中的功能。
- 二、实验内容
 - 1. 取反指令

图 6-1 取反指令范例

语句表说明

表 6-1

步序	指令	器件号	说明
1	LD	I4.0	字取反 ACO(1101 0111 1001 0101)
2	INVW	AC0	AC0 (0010 1000 0110 1010)

与、或和异或指令

(1) 字节与、字与和双字与

字节与(ANDB 字与(ANDW和双字节与(ANDD指令将输入值 IN1 和 IN2 的相应位进行

与操作,将结果存入 OUT中。

(2) 字节或、字或和双字或

字节或(ORB、字或指令(ORW 和双字或(ORD 指令将两个输入值 IN1 和 IN2 的相应位进

行或操作,将结果存入 OUT中。

(3) 字节异或、字节或和双字异或

字节异或(ROB、异或(ORW和双字异或(ORD 指令将两个输入值 IN1 和 IN2 的相应位进 行异或操作,将结果存入 OUT中。

图 6-2 与、或和异或指令

语句表说明

表 6-1

步序	指令	器件号	
1	LD	I4.0	
2	ANDW	AC1, AC0	
3	ORW	AC1, VW100	
4	XORW	AC1 AC0	

L	- T	
- 1		
T		
L		

RUN STOP

= 10.1

10.1 10.2 10.3 10.4 10.5 10.5 10.5

SIEMENS

仿真

	1.2.1	
LAAAAAAA 01234567 012345		
内存表	- 🗆 🗙	
地址 格式 值 ACO LW10 VW100 VW100 VW10 Processing state table		
开始	停止	
关闭		

实验七 传送指令实验

一、实验目的

- 1. 掌握传送指令的设置。
- 2. 了解指令是如何传送的。
- 二、实验内容

梯形图

图 7-1 快指令梯形图

语句表说明

表 7-1

步序	指令 器件号		说明		
1	LD	I2.1	将数组1(VB20到 VB23) 传送至数组2		
2	BMB	VB20 VB100 4	(VB100到 VB103)		

三. 实验结果

E.									
2۰	1.311	- 4 - 1 - 5 - 1 - 6 - 1 -	8	9 10	11 12 13 14 15 16 17 18 -	1911-2011			
		符号	安望典型	教报类型	注释				
233			TEMP						
888			TEMP						
100			TEMP						
100			TEMP						
					·				
1000									

						-
			■ 梯形图OB1			×
			ORGANIZATION_BL	DCK 主種序:	:081	^
CIEN ADVIC	8F 100 110	۵۵۵ ۵۱۵	Network 1			
SIEWIEWS	RUN 10.1 11.1	00.1 01.1 002	10.0	WAND V	N	
切具	10.0 11.0	00.2		EN		
	10.4 11.4	G0.4	2	5-IN1 OU	JT - VW10	
	10.3 11.5	0.03	5	8 - IN2		
SIMATIC 57-200	10.6	000	No. of Co.			
			Network 2			
				BLKMOV_	vv	
						~
			<			>!
	99					
01234567 0123	4 5					
内存表	—	- ×				
地址 格式 值						
VW10 With sign V						
VW100 With sign - 0						
Processing state	table					
开始	停止					

实验八 数字运算指令实验

一、实验目的

1. 掌握数学运算指令中的加、减、乘、除指令的设置。

2. 进一步熟悉 PLC程序的输入。

二、实验内容

整数运算指令梯形图

图 8-1 整数运算指令梯形图

语句表说明

表 8-1

步序	指令	器件号	说明
1	LD	I0.0	
2	+1	AC1, AC0	
3	*1	AC1, VW100	
4	/1	VW10 VW200	

三. 实验结果

55- <u>IN DUT</u> -WW10		
◎ 网络 5 ▼▼▶ H\主程序 (SBR_0 (INT_0 /	•	• • <i>A</i>
		 *

			■ 梯形图OB	1 —	\Box \times	
SIEMENS 仿真	SF 10.0 RUN 10.1 STOP 10.2 10.3 10.4	110 000 11.1 00.1 11.2 002 11.2 002 11.9 003	ORGANIZATIO Network 1 // ⊠ 01.1 10.0	N_BLOCK 王程序: 樂漆烟 ADD_I EN +20 - IN1 OU	ові ^л	
SIMATIC S7-200	10.S 10.G 10.7	115 005 006 007	Network 2	+30 - IN2		
			Network 3	EN +70 - IN1 OU +15 - IN2	T - LW10	
内存表			× 0.2	EN		
地址 格式 値 ACO With sign ▼ 0 IW10 With sign ▼ 0 VD10 With sign ▼ 0 ■ ▼ 0			<	5 - IN1 OU 7 - IN2	T - VD10	
Processing stat	te table					
开始	13	沪止				
关闭						

实验九 中断指令实验

一、实验目的

1. 掌握中断允许指令的设置。

2. 掌握中断条件返回指令(CRETD、中断连接指令(ATCD、中断分离指令(DTCDI的使用 方法。

二、实验内容

中断指令梯形图

图 9-1 中断指令梯形图

语句表说明

表 9-1

步序	指令	器件号	说明
1	LD	SM0.1	首次扫描 1. 定义 IO.0 的下降沿中断服
2	ATCH	INT_0, 1	务程序为 INT_0 2. 全局中断允许
3	ENI		
4	LD	SM5.0	如果检测到 I/O 错误,禁止 I0.0 的下降
5	DTCH	1	沿中断。该程序段是可选的。
6	LD	M5.0	当 M5.0 接通时,禁止所有中断
7	DISI		

三. 实验结果

त्वे SIMA1					
			9 10 11 12	13 14 15 15 17 18	118
E	· · · · · · · · · · · · · · · · · · ·	空世类型 TEMP TEMP TEMP TEMP	か提供型 	注释	
	SMO.1	EN	SR_D		
Pole2	2 2	•••			
网络	₃ ≯				
	判∖主程序 (SBR_(I (INT_0 /		4	

2 SIMATIC LAD 2 3 3 4 4 5 5 5 5 6 5 7 5 5 8 5 5 9 5 5 10 5 5 11 5 12 5 5 13 5 5 14 5 5 15 16 5 5 5 16 5 5 5 18 5 5 5 20 5 5 5 ···· •• •×

IQ SIMATIC I	LAD				
2. 3.1.4		1110-11-11-12-11-13- 加藤典型	1 - 14 - 1 - 15 - 1 - 16 - 1 - 17 - 1 - 注助	10	
中國新聞 (第]PBM書 1 [PDM書 1 [PDM書]和 SHO					-
₩95 2 					
6 2000 X 1 1 1 1 1	±程库 (58F.0),INT_0/				

🎬 📸 🚇 🎒 🕨 🔳 💻 🂻 arr kod odd р 🖓 🐺 🚟 😵

SIEMENS 9f 100 110 00.0 0.10 防食 10.1 11.1 00.1 0.1.1 防食 10.2 11.2 0.0.2 SIMATIC 57-230 10.2 0.1.5 0.0.5	■ 样形图OB1 - · · · · · · · · · · · · · · · · · ·		
	SM0.1 ATCH INTO 1 INT INTO 1 INT EVNT EVNT CENI) INT Network 2 SM0.5 Image: Smooth 1// File KR SK SM0.0 Q0.1 Image: Smooth 1// File KR SK SM0.0 Q0.1 Image: Smooth 1// File KR SK		

实验十 程序控制指令实验

一、实验目的

1. 掌握条件结束指令在程序控制中的作用。

2. 熟悉跳转指令的使用方法。

3. 掌握如何使用顺控指令(SCR。

二、实验内容

1. 条件结束指令

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如 要下载或阅读全文,请访问: <u>https://d.book118.com/26710212314</u> 2006104