【2012 高考试题】

1. 【2012 高考安徽文 5】公比为 2 的等比数列 $\{a\atop n\}$ 的各项都是正数,且 $\{a\atop 3\atop 11=16\}$

则 a₅=

- (A) 1 (B) 2 (C) 4
- (D) 8

【答案】A

【解析】 $a_3a_{11} = 16 \Leftrightarrow a_7^2 = 16 \Leftrightarrow a_7 = 4 = a_5 \times 2^2 \Leftrightarrow a_5 = 1$

- 2. 【2012 高考全国文 6】已知数列 ${a \atop n}$ 的前 ${n \atop 0}$ 页和为 ${n \atop 0}$, ${a \atop 1}$, ${n \atop 0}$, ${a \atop 1}$, ${a \atop 0}$, ${a \atop 1}$, ${a \atop 0}$, ${a \atop 1}$, ${a \atop 0}$, ${a$
 - (A) 2n 1
- $(3)^{n-1}$ $(2)^{n-1}$ $(2)^{n-1}$ $(3)^{n-1}$ $(2)^{n-1}$

【解析】因为 $a_{n+1} = S_{n+1} - S_n$,所以由 $S_n = 2a_{n+1}$ 得, $S_n = 2(S_{n+1} - S_n)$,整理得

 $\frac{S_{n+1}}{3S_n=2S_{n+1}}=\frac{3}{2}$,所以数列 $\{S_n\}$ 是以 $S_1=a_1=1$ 为首项,公比 $q=\frac{3}{2}$ 的等比

- 3. 【2012 高考新课标文 12】数列 $\{a_n\}$ 满足 $a_{n+1}+(-1)_n$ $a_n=2n-1$,则 $\{a_n\}$ 的前 60 项和为
 - (A) 3690
- (B) 3660
- (C) 1845
- (D) 1830

【解析】由 $a_{n+1} + (-1)^n a_n = 2n - 1$ 得.

$$a_{n+2} = (-1)^n a_{n+1} + 2n + 1 = (-1)^n [(-1)^{n-1} a_n + 2n - 1] + 2n + 1$$

 $= -a_n + (-1)^n (2n - 1) + 2n + 1$

即
$$a_{n+2} + a_n = (-1)^n (2n-1) + 2n + 1$$
,也有 $a_{n+3} + a_{n+1} = -(-1)^n (2n+1) + 2n + 3$,两

式相加得 $a_n + a_{n+1} + a_{n+2} + a_{n+3} = -2(-1)^n + 4n + 4$, 设化为整数。

$$a_{4k+1} + a_{4k+2} + a_{4k+3} + a_{4k+4} = -2(-1)^{4k+1} + 4(4k+1) + 4 = 16k+10 ,$$

 $_{50}$ $_{6$

- 4. 【2012 高考辽宁文 4】在等差数列 $\{a_n\}$ 中,已知 $a_4+a_8=16$,则 $a_2+a_1=16$
- (A) 12
- (B) 16
- (C) 20

【答案】B

【解析】 a a a (a 3d) (a 7d) 2a 10d,

5. 【2012 高考湖北文 7】定义在 $(-\infty, 0)$ ∪ $(0, +\infty)$ 上的函数 f(x), 如果对于任 意给定的等比数列 $\{a_n\}$, $\{f(a_n)\}$ 仍是等比数列,则称f(x)为"保等比数列函数"。现有 定义在 $(-\infty, 0)$ \cup $(0, +\infty)$ 上的如下函数: ①f $(x) = x^2$; ②f (x) = 2x; ③ $f(x) = \sqrt{x}$; $4f(x) = \ln |x|.$

则其中是"保等比数列函数"的 f(x)的序号为

A. 12 B. 34 C. 13 D. 24

【答案】C

【解析】设数列 $\left\{a_n\right\}$ 的公比为 $\left\{a_n\right\}$ 的公比为 $\left\{a_n\right\}$, $\left\{f\left(a_n\right)\right\}$ 一是常数,

对于②, $\frac{f(a_{n+1})}{f(a_n)} = \frac{2^{a_{n+1}}}{2^{a_n}} = 2^{a_{n+1}-a_n}$,不是常数,故②不符合条件,对于③, $\frac{f(a_{n+1})}{f(a_n)} = \frac{\sqrt{a_{n+1}}}{\sqrt{a_n}} = \sqrt{a_n}$, 是常数,故③符合条件,对于④, $\frac{f(a_{n+1})}{f(a_n)} = \frac{\ln |a_{n+1}|}{\ln |a_n|}$,不是常数,故

④不符合条件.由"保等比数列函数"的定义知应选 C

6. 【2012 高考四川文 12】设函数 f(x) $(x-3)^3$ x-1 , 数列 n 是公差不为 0 的等差数

列, $f(a_1)$ $f(a_2)$ $f(a_7)$ 14, 则 a_1 a_2 a_7 ()

A, 0

- B, 7
- C, 14
- D, 21

【答案】D.

【解析】

 $f(a_1)$ $f(a_2)$ $f(a_3)$ $f(a_1)$ $f(a_2)$ $f(a_2)$ $f(a_2)$ $f(a_3)$ $f(a_2)$ $f(a_3)$ $f(a_2)$ $f(a_3)$ $f(a_3)$ $f(a_2)$ $f(a_3)$ $f(a_3)$ f

$$+a_7-1=14$$
,即 $(a_1-3)^3+a_1-3+(a_2-3)^3+a_2-3+\cdots(a_7-3)^3+a_7-3=0$,根据
等差数列的性质得 $(a_4-3-3d)^3+(a_4-3-2d)^3+\cdots+(a_4-3+3d)^3+7(a_4-3)=0$,即
 $(a_4-3-3d)^3+(a_4-3+3d)^3+(a_4-3-2d)^3+(a_4-3-2d)^3+\cdots+(a_4-3)^3+7(a_4-3)=0$
 $\therefore 2(a_4-3)((a_4-3)^2+27d^2)+2(a_4-3)((a_4-3)^2+12d^2)+2(a_4-3)((a_4-3)^2+3d^2)$
 $+(a_4-3)^3+7(a_4-3)=0$,即 $(a_4-3)(7(a_4-3)^2+84d^2+7)=0$, $\therefore a_4-3=0$,即 $a_4=3$,
 $\therefore a_1+a_2+\cdots+a_7=7a_4=21$,故选 D.

A. 1006

B. 2012

C. 503

D. 0

【答案】A.

 $y=\cos{\pi\over 2}x$ 【解析】因为函数 2 的周期是 4,所以数列 $\{a_n\}$ 的每相邻四项之和是一个常

数 2,所以
$$S_{2012} = \frac{2012}{4} \times 2 = 1006$$
. 故选 A.

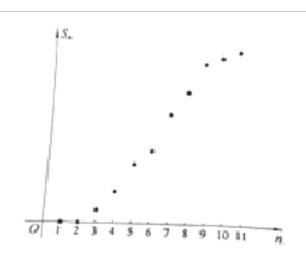
- 8. 【2102 高考北京文 6】已知为等比数列,下面结论种正确的是
 - (A) $a_1 + a_3 \ge 2a_2$ (B) a_1^2 a_2^2 a_2^2 (C) 若 $a_1 = a_3$, 则 $a_1 = a_2$ (D) 若 $a_3 > a_1$, 则 $a_4 > a_4$

 a_{2}

【答案】B

【解析】当 $a_1 < 0$,q < 0,时,可知 $a_1 < 0$, $a_2 < 0$,所以 A 选项错误,当 q = -1 时,C 选项错误:当q < 0 时, $a_3 > a_1 \Rightarrow a_3 q < a_1 q \Rightarrow a_4 < a_2$,与 D 选项矛盾,因此描述均值定理的 B 选项为正确答案,故选 B。

9. 【2102 高考北京文 8】某棵果树前 n 年的总产量 S_n 与 n 之间的关系如图所示,从目前记录的结果看,前 m 年的年平均产量最高,m 的值为



(A) 5 (B) 7 (C) 9 (D) 11

【答案】C

【解析】由图可知 6,7,8,9 这几年增长最快,超过平均值,所以应该加入,因此选 C。

 S_4 $\frac{1}{1}$ $\frac{24}{2}$ 15 【解析】因为数列是等比数列,所以 $\frac{1}{1}$ $\frac{24}{2}$ $\frac{1}{1}$ $\frac{2}{2}$ $\frac{1}{1}$

11.【2012 高考新课标文 14】等比数列 $\{a_n\}$ 的前 n 项和为 S_n ,若 S_3 +3 S_2 =0,则公比 q=_____

【答案】 2

【解析】显然公比^{q 1},设首项为^a₁,则由^{S₃ 3S₂ 0},得 $\frac{a(1 q_3)}{1 q}$ 3 $\frac{a(1 q_2)}{1 q}$,即 q_3 3 q_2 4 0 即 q_3 q_2 4 q_2 4 q_2 (q 1) 4 (q 2 1) 0,即 (q 1) (q 2 4q 4) 0,所以 q_2 4q 4 (q 2) 0,解得 q 2.

12. 【2012 高考江西文 13】等比数列 $\{a_n\}$ 的前 n 项和为 S_n ,公比不为 1。若 $a_n=1$,且对任意的 $^{\blacksquare \in \mathbb{N}}$ *都有 $a_{n+2}+a_{n+1}-2a_n=0$,则 $S_5=$ ______。

【答案】11

13. 【2012 高考上海文 7】有一列正方体,棱长组成以 1 为首项、 $\frac{1}{2}$

$$\frac{8}{7}$$
【答案】 $\frac{7}{7}$ 。

 $\frac{1}{8}$ 【解析】由题意可知,该列正方体的体积构成以 1 为首项, $\frac{8}{8}$ 为公比的等比数列,

$$\frac{1}{1} \frac{\frac{1}{8^{n}}}{1} \frac{1}{8} = \frac{8}{7} \left(1 \frac{1}{8^{n}} \right), \quad \lim_{n \to \infty} (V_{1} + V_{2} + \dots + V_{n}) = \frac{8}{7}.$$

f(x) $\frac{1}{1}$ x , 各项均为正数的数列 a 满足 a 1 ,

【答案】
$$\frac{3 \quad 13\sqrt{5}}{26}$$
。

【解析】由题意得, a_3 $\frac{1}{2}$, a_5 $\frac{2}{3}$, ..., a_{11} $\frac{8}{13}$,

$$a_{20.} + a_{11} = \frac{1\sqrt{5}}{2} + \frac{8}{13} = \frac{3 \cdot 13\sqrt{5}}{26}$$

15. 【2012 高考辽宁文 14】已知等比数列 $\{a_n\}$ 为递增数列. 若 $a_n>0$,且 2 $(a_n+a_{n+2})=5a_n$,则数列 $\{a_n\}$ 的公比 q=______.

【答案】2

 2(a a n a n 2)
 5a n 1
 2a (1 q2)
 5a q, 2(1 q2)
 5q,解得q 2或q ½

 医为数列为递增数列,且 n 1
 0,所以q 1, q 2

16. 【2102 高考北京文 10】已知 $\{a_n^{}\}$ 为等差数列, $S_n^{}$ 为其前 n 项和,若 $\frac{1}{2}$, $S_2^{}=a_3^{}$,则 $a_2^{}=$ _____, $S_n^{}=$ _____。

【答案】
$$a_2$$
 1, $S_n = \frac{1}{4}n^2 = \frac{1}{4}n$

$$S$$
 a a a a a a a a d a 2d d a $\frac{1}{2}$, 【解析】因为 $\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{2}$ $\frac{1}{2}$,

所以
$$a_2$$
 a_1 d 1 , S_n na_1 $n(n 1)d$ $\frac{1}{4}n^2$ $\frac{1}{4}n$.

$$\frac{1}{4}$$
【答案】

- 18.【2012 高考浙江文 19】(本题满分 14分)已知数列 $\{a_n\}$ 的前 n 项和为 S_n ,且 $S_n=2n^2$ n, $n \in \mathbb{N}*$,数列 $\{b_n\}$ 满足 $a_n=4\log_2 b_n+3$, $n \in \mathbb{N}*$.
 - (1) 求a, b;
 - (2) 求数列 {a_n b_n} 的前 n 项和 T_n.

【解析】

(1) 由
$$S_n = 2n^2 + n$$
, 得

当
$$n \ge 2$$
 时, $a_n = S_n - S_{n-1} = 2n^2 + n - [2(n-1)^2 + (n-1)] = 4n - 1$, $n \in \mathbb{N}$ *

由
$$a_n=4\log_2 b_n+3$$
,得 $b_n=2n-1$, $n\in N*$.

(2) 由 (1) 知
$$a_n b_n = (4n-1) \cdot 2^{n-1}$$
, $n \in \mathbb{N}^*$

所以
$$T_n = 3 + 7 \times 2 + 11 \times 2^2 + ... + (4n-1) \cdot 2^{n-1}$$
,

$$2T_n = 3 \times 2 + 7 \times 2^2 + 11 \times 2^3 + \dots + (4n-1) \cdot 2^n$$

$$2T_n \quad T_n \quad 4n \quad 1 \quad 2^n \quad [3 \quad 4(2 \quad 2^2 \quad \dots \quad 2^{n-1})]$$

$$(4n 5) 2^n 5$$

$$T_{n}$$
 (4n 5) 2^{n} 5, $n \in N *$.

19. 【2012 高考江苏 20】(16 分)已知各项均为正数的两个数列 ^{a } 和 ^{b } 满足:

$$a_{n-1} = \frac{a + b}{\sqrt{a_{n-1}^{2} + b_{n-1}^{2}}}, \quad n = N *,$$

$$\frac{b}{a}$$
 1 $\frac{b}{a}$ 2 $\frac{b}{a}$ 2 (1) 设 $\frac{b}{a}$ 1 $\frac{b}{a}$ 8 $\frac{b}{a}$ 2 $\frac{b}{a}$ 3 $\frac{b}{a}$ 4 $\frac{b}{a}$ 2 $\frac{b}{a}$ 4 $\frac{b}{a}$ 4 $\frac{b}{a}$ 6 $\frac{b}{a}$ 6 $\frac{b}{a}$ 7 $\frac{b}{a}$ 8 $\frac{b}{a}$ 9 $\frac{b}{a}$

b
$$\sqrt{2} \cdot \frac{b}{a}$$
 (2) 设 $n \cdot 1$ n

$$a_{n+1} = \frac{a_n + b_n}{\sqrt{a_n^2 + b_n^2}} = \frac{b_{n+1}}{\sqrt{1 + \left(\frac{b_n}{a_n}\right)^2}}$$
 [答案] 解: (1) ::

$$\frac{b_{n+1}}{a_{n+1}} = \sqrt{1 + \left(\frac{b_n}{a_n}\right)^2}$$

$$\left(\frac{b_{n+1}}{a_{n+1}}\right)^2 - \left(\frac{b_n}{a_n}\right)^2 = \left(\sqrt{1 + \left(\frac{b_n}{a_n}\right)^2}\right)^2 - \left(\frac{b_n}{a_n}\right)^2 = 1\left(n \in N^*\right)$$

$$\left\{ \left(rac{b_n}{a_n} \right)^2 \right\}$$
 是以 1 为公差的等差数列。

(2)
$$a_n > 0$$
, $b_n > 0$, $\frac{(a_n + b_n)^2}{2} \le a_n^2 + b_n^2 < (a_n + b_n)^2$

$$1 < a_{n+1} = \frac{a_n + b_n}{\sqrt{a_n^2 + b_n^2}} \le \sqrt{2}$$
... (*)

设等比数列 ${a_a}$ 的公比为 q ,由 $a_a>0$ 知 q>0 ,下面用反证法证明 q=1

若
$$q > 1$$
,则 $a_1 = \frac{a_2}{q} < a_2 \le \sqrt{2}$, ... 当 $n > \log_q \frac{\sqrt{2}}{a_1}$ 时, $a_{n+1} = a_1 q^n > \sqrt{2}$,与 (*) 矛盾。

又:
$$b_{n+1} = \sqrt{2} \cdot \frac{b_n}{a_n} = \frac{\sqrt{2}}{a_1} \cdot b_n \quad (n \in N^*), \quad \{b_n\} \text{ 是公比是 } \frac{\sqrt{2}}{a_1} \text{ 的等比数列.}$$

若
$$a_1 \neq \sqrt{2}$$
,则 $\frac{\sqrt{2}}{a_1} > 1$,于是 $b_1 < b_2 < b_3$ 。

$$Z_{\pm 1} = \frac{a_n + b_n}{\sqrt{a_n^2 + b_n^2}} \quad a_1 = \frac{a_1 + b_n}{\sqrt{a_1^2 + b_n^2}} \quad b_n = \frac{a_1 \pm a_1^2 \sqrt{2 - a_1^2}}{a_1^2 - 1} \ .$$

 b_1 b_2 b_3 中至少有两项相同,与 $b_1 < b_2 < b_3$ 矛盾。 $a_1 = \sqrt{2}$ 。

$$b_n = \frac{\sqrt{2} \pm \left(\sqrt{2}\right)^2 \sqrt{2 - \left(\sqrt{2}\right)^2}}{\left(\sqrt{2}\right)^2 - 1} = \sqrt{2}$$

$$a_1 = b_2 = \sqrt{2}$$

$$a_{n+1} = \frac{a_n + b_n}{\sqrt{{a_n}^2 + {b_n}^2}} \quad b_{n+1} = 1 + \frac{b_n}{a_n} \quad \frac{b_{n+1}}{a_{n+1}} = \sqrt{1 + \left(\frac{b_n}{a_n}\right)^2} \, ,$$
 【解析】(1) 根据题设

从而证明 $\left(\frac{b_{n+1}}{a_{n+1}}\right)^2 - \left(\frac{b_n}{a_n}\right)^2 = 1$ 而得证.

 $1 < a_{n+1} = \frac{a_n + b_n}{\sqrt{{a_n}^2 + {b_n}^2}} \le \sqrt{2}$ (2) 根据基本不等式得到 ,用反证法证明等比数列 $\{a_n\}$ 的 公比 q=1 。

从而得到
$$a_n=a_1$$
 $(n\in N^*)$ 的结论,再由
$$b_{n+1}=\sqrt{2} \cdot \frac{b_n}{a_n}=\frac{\sqrt{2}}{a_1} \cdot b_n$$
 知 $\{b_n\}$ 是公比是 $\frac{\sqrt{2}}{a_1}$ 的 等比数列。最后用反证法求出 $a_1=b_2=\sqrt{2}$ 。

20. 【2012 高考訓南文 20】(本小题满分 13 分)

某公司一下属企业从事某种高科技产品的生产. 该企业第一年年初有资金 2000 万元,将其投入生产,到当年年底资金增长了 50%. 预计以后每年资金年增长率与第一年的相同. 公司要求企业从第一年开始,每年年底上缴资金 d 万元,并将剩余资金全部投入下一年生产. 设第 n 年年底企业上缴资金后的剩余资金为 a 万元.

- (I)用d表示 a_1 , a_2 ,并写出 a_1 与 a_n 的关系式;
- (Ⅱ)若公司希望经过 m(m≥3)年使企业的剩余资金为 4000 万元,试确定企业每年

【答案】

【解析】(I)由题意得 $a_1 = 2000(1 + 50\%) - d = 3000 - d$,

$$a_2 = a_1(1+50\%) - d = \frac{3}{2}a_1 - d$$

$$a_{n+1} = a_n(1+50\%) - d = \frac{3}{2}a_n - d$$

(II) 曲(I) 得
$$a_n = \frac{3}{2}a_{n-1} - d$$

= $(\frac{3}{2})^2 a_{n-2} - \frac{3}{2}d - d$
= $\frac{3}{2}(\frac{3}{2}a_{n-2} - d) - d$

=...

$$= \left(\frac{3}{2}\right)^{n-1}a_1 - d\left[1 + \frac{3}{2} + \left(\frac{3}{2}\right)^2 + \dots + \left(\frac{3}{2}\right)^{n-2}\right]$$

a_n =
$$(\frac{3}{2})^{n-1}(3000-d)-2d\left[(\frac{3}{2})^{n-1}-1\right]$$

較理得

$$= (\frac{3}{2})^{n-1}(3000 - 3d) + 2d$$

由题意, $a_n = 4000, \therefore (\frac{3}{2})^{n-1}(3000 - 3d) + 2d = 4000,$

$$d = \frac{\left[\left(\frac{3}{2} \right)^n - 2 \right] \times 1000}{\left(\frac{3}{2} \right)^n - 1} = \frac{1000(3^n - 2^{n+1})}{3^n - 2^n}$$

解得

数该企业每年上缴资金
$$\frac{1000(3^n-2^{n+1})}{3^n-2^n}$$
 时,经过 $\frac{m(m\geq 3)}{4}$ 年企业的剩余资金为 4 0 0 0 元.

21. 【2012 高考重庆文 16】(本小题满分 13 分,(I) 小问 6 分,(II) 小问 7 分))

已知 {a_n} 为等差数列,且 a_n a_n 8,a_n a_n 12, (I)求数列 a_n 的通项公式;(II)

 $\{a_n^{\ }\}$ 的前 n 项和为 $\{a_n^{\ }\}$ 为 $\{a_n^{\ }\}$ 的前 $\{a_n$

列,所以
$$a_{k}$$
 a_{1-k-2} 从而 $(2k)_{2}$ $2(k-2)(k-3)$,即 k_{2} $5k-6$ 0

解得 k 6 或 k 1 (舍去), 因此 k 6。

22. 【2012 高考山东文 20】 (本小题满分 1.2 分)

已知等差数列 ${a \atop n}$ 的前 5 项和为 105,且 ${a \atop 20}$ 2 ${a \atop 5}$.

- (I)求数列 ^{{a}_n,的通项公式;
- (II)对任意 ^{m N*},将数列 ${a \atop n}$ 中不大于 ${72}^{n}$ 的项的个数记为 ${b \atop m}$. 求数列 ${b \atop m}$ 的前 m 项 和 ${S \atop m}$.

解得^a 7,d 7,

所以通项公式为 a_n 7 (n 1) 7 7n.

(II)由a 7n 72m ,得n 72m1,

即 b 72m 1

23. 【2012 高考安徽文 21】(本小题满分 13 分)

 $f(x) = \frac{x}{2} + \sin x$ 的所有正的极小值点从小到大排成的数列为 $x = \frac{x}{2}$.

- (I) 求数列 ^{X } 的通项公式;
- (II)设n 的前n项和为n,求n。

【答案】

$$f(x) = \frac{x}{2} + \sin x \Rightarrow f'(x) = \frac{1}{2} + \cos x = 0 \Leftrightarrow x = 2k\pi \pm \frac{2\pi}{3} (k \in \mathbb{Z})$$

$$f'(x) > 0 \Leftrightarrow 2k\pi - \frac{2\pi}{3} < x < 2k\pi + \frac{2\pi}{3} (k \in \mathbb{Z})$$

$$f'(x) < 0 \Leftrightarrow 2k\pi + \frac{2\pi}{3} < x < 2k\pi + \frac{4\pi}{3} (k \in \mathbb{Z})$$

$$x = 2k\pi - \frac{2\pi}{3} (k \in \mathbb{Z})$$
 問, $f(x)$ 取极小值,

得:
$$x_n = 2n\pi - \frac{2\pi}{3}$$
.

(II) 由 (I) 得:
$$x_n = 2n\pi - \frac{2\pi}{3}$$

$$S_n = x_1 + x_2 + x_3 + \dots + x_n = 2\pi(1 + 2 + 3 + \dots + n) - \frac{2n\pi}{3} = n(n+1)\pi - \frac{2n\pi}{3}$$

$$\underline{\underline{}} n = 3k(k \in N^*)$$
 By, $\sin S_n = \sin(-2k\pi) = 0$,

当
$$n = 3k - 1(k \in N^*)$$
 时, $\sin S_n = \sin \frac{2\pi}{3} = \frac{\sqrt{3}}{2}$

$$\underline{\underline{}}$$
 $n = 3k - 1(k \in N^*)$ 时, $\sin S_n = \frac{\sqrt{3}}{2}$,

$$_{\stackrel{\text{def}}{=}}$$
n 3k 2(k N*) $_{\stackrel{\text{left}}{=}}$ sinS $_{\stackrel{\text{n}}{=}}$ $\frac{\sqrt{3}}{2}$.

24. 【2012 高考广东文 19】(本小题满分 14 分)

- (1) 求 ^a 1的值;
- (2) 求数列 ⁿ 的通项公式.

【答案】

【解析】(1) 当
$$n=1$$
时, $T_1=2S_1-1$ 。

因为
$$T_1 = S_1 = a_1$$
,所以 $a_1 = 2a_1 - 1$,求得 $a_1 = 1$ 。

(2)
$$\underset{n}{\underline{}} = 1$$
 $\underset{n}{\underline{}} = 1$ $\underset{n}{\underline{}} = 2S_n - 2S_{n-1} - 2N + 1$

所以
$$S_n = 2S_{n-1} + 2n - 1$$
 ①

所以
$$S_{n+1} = 2S_n + 2n + 1$$
 ②

②一①得
$$a_{n+1} = 2a_n + 2$$
,

所以
$$a_{n+1}+2=2(a_n+2)$$
,即 $\frac{a_{n+1}+2}{a_n+2}=2$ $(n \ge 2)$,

求得
$$a_1 + 2 = 3$$
, $a_2 + 2 = 6$, 则 $\frac{a_2 + 2}{a_1 + 2} = 2$.

所以 $\{a_n+2\}$ 是以 3 为首项,2 为公比的等比数列,

所以
$$a_n + 2 = 3 \cdot 2^{n-1}$$
,

所以
$$\alpha_n = 3 \cdot 2^{n-1} - 2$$
, $n \in \mathbb{N}^*$.

25. 【2012 高考江西文 17】(本小题满分 12 分)

已知数列 $|a_n|$ 的前 n 项和 $|a_n|$ (其中 c, k 为常数),且 $a_2=4$, $a_6=8a_3$

- (1) 求a;
- (2) 求数列 {na } 的前 n 项和 T 。

【答案】

【解析】(1)当
$$^{n} > 1$$
时, $a_n = S_n - S_{n-1} = k(c^n - c^{n-1})$

$$\log a_n = S_n - S_{n-1} = k(c^n - c^{n-1})$$

$$a_6 = k(c^6 - c^5)$$
, $a_3 = k(c^3 - c^2)$

$$\frac{a_6}{a_3} = \frac{c^6 - c^5}{c^3 - c^2} = c^3 = 8$$

$$, \quad \therefore c = 2 \cdot \therefore a_2 = 4, \quad \text{pr} k(c^2 - c^1) = 4, \quad \text{pr} k(c^2 - c^1) = 4, \quad \text{pr} k(c^2 - c^1) = 4$$

当
$$n=1$$
 时, $a_1 = S_1 = 2$

综上所述
$$a_n = 2^n (n \in N^*)$$

$$(2) na_n = n2^n, \quad \square$$

$$T_n = 2 + 2 \cdot 2^2 + 3 \cdot 2^3 + \dots + n2^n$$
 (1)

$$2T_n = 1 \cdot 2^2 + 2 \cdot 2^3 + 3 \cdot 2^4 + \dots + (n-1)2^n + n2^{n+1}(2)$$
 (1) - (2)

$$-T_n = 2 + 2^2 + 2^3 + \dots + 2^n - n2^{n+1}$$

$$T_n = 2 + (n-1)2^{n+1}$$

【2011年高考试题】

- (2011 年高考四川卷文科 9) 数列 $\{a_n\}$ 的前 n 项和为 S_n ,若 a_1 =1, a_{n+1} =3 S_n (n ≥1), 则 a₆=
 - $(A) \ 3 \ \times 4_4$

 $(B) 3 \times$ 44+1

(C) 4_4

(D) 44+1

答案: A

解析: 由题意,得 $a_2 = 3a_1 = 3$. 当 $n \ge 1$ 时, $a_{n+1} = 3S_n$ ($n \ge 1$) ①,所以 $a_{n+2} = 3S_{n+1}$ ②, ②-①得 $a_{n+2} = 4a_{n+1}$,故从第二项起数列等比数列,则 $a_6 = 3 \times 44$.

- S a n 的前 n 项和,若 n ,公差 n n 2. (2011 年高考全国卷文科 6) 设 n 为等差数列 n 的前 n 项和,若 n ,公差 n .
- $S_{A 2} S_{n} 24$, Mk
- (A) 8 (B) 7 (C) 6 (D) 5

【答案】D

【解析】 S_{k2} S_{k} S_{k2} S_{k3} S_{k4} S_{k4}

2 1 (2k 1) 2 4k 4 24 k 5 故选 D。

3. (2011 年高考江苏卷 13) 设 ¹ a a a 7, 其中 ^a, ^a, ^a, ^a ⁵ ⁷ 成公比为 q 的等比数列, ^a₂, ^a₄, ^a₆ 成公差为 1 的等差数列,则 q 的最小值是______

【答案】 √3

$$a_{2}$$
 q a_{2} 1, a_{2} 1 q² a_{2} 2

4. (2011 年高考辽宁卷文科 $15)S_n$ 为等差数列 $\{a_n\}$ 的前 n 项和, $S_2=S_6$, $a_4=1$,则 $a_5=$ _____。

答案: -1

$$2a_1 \quad d \quad 6a_1 \quad \frac{6 \quad 5}{2}d,$$
 解析: 设等差数列的公差为 d,解方程组 $a_1 \quad 3d \quad 1$, 得 $d=-2$, $a_5=a_4+d=-1$.

5. (2011 年高考湖南卷文科 20) (本题满分 13 分)

某企业在第1年初购买一台价值为120万元的设备M,M的价值在使用过程中逐年减少,从第2年到第6年,每年初M的价值比上年初减少10万元;从第7年开始,每年初M的价值为上年初的75%.

(I) 求第 n 年初 M 的价值 n 的表达式;

解析: (I) 当 n 6 时, 数列 ^{a} 是首项为 120, 公差为 10 的等差数列.

a 120 10 (n 1) 130 10 n;

当 n = 6 时,数列 n = 8 是以 n = 8 是以 n = 8 是以 n = 8 是以 n = 8 为等比数列,又 n = 8 所以 n = 8

120 10 (n 1) 130 10n, n 6

$$a_{n}$$
 a_{n} $70 \left(\frac{3}{4}\right)_{n} 6, n$ 7

因此,第ⁿ年初,M的价值^an的表达式为

(II)设 $^{S}_{n}$ 表示数列 $^{\{a_n\}}_{n}$ 的前 n 项和,由等差及等比数列的求和公式得

 $_{1}$ 1 n 6_时, $_{n}$ 120n 5n(n 1), $_{n}$ 120 5(n 1) 125 5n;

当 n 7 时

 S_n S_6 $(a_7$ a_8 a_n) 570 70 $\frac{3}{4}$ 4 [1 $(\frac{3}{4})^n$ 6] 780 210 $(\frac{3}{4})^n$ 6

$$A_{n} = \frac{780 \quad 210 \quad (\frac{3}{4})_{n \ 6}}{n}.$$

因为 $\left\{a\right\}$ 是递减数列,所以 $\left\{A\right\}$ 是递减数列,又

$$A_{8} \quad \frac{780 \quad 210 \quad (\frac{3}{4})^{8} \, ^{6}}{8} \quad 82\frac{47}{64} \quad 80, A_{9} \quad \frac{780 \quad 210 \quad (\frac{3}{4})^{9} \, ^{6}}{9} \quad 76\frac{79}{96} \quad 80,$$

所以须在第9年初对M更新.

6. (2011 年高考湖北卷文科 17) (本小题满分 12 分)

成等差数列的三个正数的和等于 15,并且这三个数分别加上 2、5、13 后成为等比数列 $\{b_n\}$ 中的 b_2 、 b_4 、 b_5

- (I)求数列 ^{{b}_n 的通项公式;
- $\{S_n \xrightarrow{b}\}$ 的前 n 项和为 S_n ,求证:数列 $\{S_n \xrightarrow{b}\}$ 是等比数列. 本小题主要考查等差数列、等比数列及其求和公式等基础知识,同时考查基本运算能力. 解析:
- (1) 设成等差数列的三个正数分别为 a-d, a, a+d.
- **、** 依题意,得 a-d+a+a+d=15, 解得 a=5.

所以 $\{b_n\}$ 中的 b_3, b_4, b_5 依次为 7-d, 10, 18+d.

依题意,有(7-d)(18+d)=100,解得 d=2或 d=-13(含去).

故 ^{{b}_n} 的第 3 项为 5, 公比为 2.

由
$$b_3$$
 b_1 2_2 , 即 5 b_1 2_2 , 解得 $\frac{5}{4}$.

所以 $\frac{5}{4}$ 为首项,2 为公比的等比数列,其通项公式为 $\frac{5}{4}$ $\frac{5}{4}$ $\frac{2}{4}$ $\frac{5}{4}$ $\frac{2}{1}$ $\frac{2}{1}$

(2) 数列
$$\{b_n\}$$
 的前 n 项和 $\{b_n\}$ 的前 n 项和 $\{b_n\}$ 的前 n 项和 $\{b_n\}$ 的前 n 项和 $\{b_n\}$ 有 $\{b_n\}$ 的前 n 项和 $\{b_n\}$ 有 $\{b_n\}$ 的前 n 项和 $\{b_n\}$ 有 $\{b_n\}$ 有 $\{b_n\}$ 的前 n 项和 $\{b_n\}$ 有 $\{b_n\}$ 的前 n 项和 $\{b_n\}$ 有 $\{b_n\}$ 有 $\{b_n\}$ 的前 n 项和 $\{b_n\}$ 有 $\{b_n\}$ 有 $\{b_n\}$ 的前 n $\{b_n\}$ 的 $\{b_n\}$ $\{$

$$S_{1} = \frac{5}{4} = \frac{5}{2}, \frac{S_{n-1}}{S_{n}} = \frac{\frac{5}{4}}{\frac{5}{4}} = \frac{5}{5} = \frac{2^{n-1}}{2^{n-2}} = 2.$$

7. (2011年高考山东卷文科 20) (本小题满分 12 分)

等比数列 ^a _n 中, ^a , ^a , ^a 。分别是下表第一、二、三行中的某一个数,且 ^a , ^a , ^a 。 中的任何两个数不在下表的同一列.

	第一列	第二列	第三列
第一行	3	2	10
第二行	6	4	14
第三行	9	8	18

(I) 求数列 ⁿ 的通项公式;

(II) 若数列 ^b 满足: ^b a (1) lna b n 的前 2n 项和 S_{2n}.

8. (2011 年高考广东卷文科 20) (本小题满分 14 分)

设 b>0, 数列
$${a \atop n}$$
 满足 ${a \atop n}$ b, ${a \atop n}$ ${nba \atop a \atop n \atop n}$ ${n \atop 1}$ ${n \atop 2}$ ${n \atop 2}$.

- (1) 求数列 ^{{a} 的通项公式;
- (2) 证明: 对于一切正整数ⁿ, ^{2a} b^{n 1} 1.

【解析】

9. (2011年高考全国新课标卷文科 17) (本小题满分 12 分)

(1)
$$_{n}^{S}$$
为数列 $_{n}^{a}$ 前 $_{n}^{n}$ 项的和,证明: $_{n}^{S}$ $\frac{1}{2}^{n}$

解析:(1)直接用等比数列通项公式与求和公式;(2)代人化简得到等差数列在求其和。

$$a_n = \frac{1}{3} + \frac{1}{3}$$
 $n = \frac{1}{3}$ $n = \frac{1}{3}$ $n = \frac{1}{3}$ $n = \frac{1}{2}$ $n = \frac{1}{2}$

(2)
$$b \log_3 a \log_3$$

 $\{a_n\}$ 10. (2011 年高考浙江卷文科 19) (本题满分 14 分) 已知公差不为 0 的等差数列 $\{a_n\}$ 的

$$\frac{1}{a}$$
 $\frac{1}{a}$ $\frac{1}{a}$ $\frac{1}{a}$ $\frac{1}{a}$ $\frac{1}{a}$ 首项 $\frac{1}{a}$ 为 a (a R), 且 $\frac{1}{a}$, $\frac{1}{a}$, $\frac{1}{a}$ 成等比数列(I)求数列 a 的通项公式(II)

 $\frac{1}{a}$ $\frac{1}{a}$ \cdots $\frac{1}{a}$ $\frac{1}{a}$ \cdots $\frac{1}{a}$ $\frac{1}{a}$ 的大小.

【解析】(I)
$$\frac{1}{a_2^2} = \frac{1}{a_1} \cdot \frac{1}{a_4} \Rightarrow a_2^2 = a_1 a_4 \Rightarrow (a_1 + d)^2 = a_1 (a_1 + 3d) \Rightarrow d = a_1 = a$$

数列 $\{a_n\}$ 的通项公式 $a_n = a_1 + (n-1)d = a_1 + (n-1)a_1 = na$

$$T_n = \frac{1}{a_2} + \frac{1}{a_{2^2}} + \ldots + \frac{1}{a_{2^n}}$$
 (II) 记 为 $a_{2^n} = 2^n a$,所以

$$T_n = \frac{1}{a} \left(\frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^n} \right) = \frac{1}{a} \frac{\frac{1}{2} \left[1 - \left(\frac{1}{2} \right)^n \right]}{1 - \frac{1}{2}}$$

$$=\frac{1}{a}[1-(\frac{1}{2})^n]$$
 从而当 $a>0$ 时, $T_n<\frac{1}{a_1}$,当 $a<0$ 时, $T_n>\frac{1}{a_1}$

11. (2011 年高考天津卷文科 20) (本小题满分 14 分)

$$\frac{S}{(III)}$$
设 $\frac{S}{n}$ $\frac{S}{n}$ 的前 n 项和,证明 $\frac{S}{n}$ $\frac{S}{$

$$b = \frac{3 (1)^{n}}{2}, n N \cdots$$
 【解析】(I)由 $n = \frac{3 (1)^{n}}{2}, n N$,可得

当 n=1 时,
$$a_1$$
 2a₂ 1, a_1 2, a_2 $\frac{3}{2}$;

②-①得:
$$a_{2n\ 1}$$
 $a_{2n\ 1}$ $a_{2n\ 1}$

(III) 证明:
$$\frac{a}{1}$$
2 ,由(II) 知,当 $\frac{k}{1}$ 且 $\frac{k}{2}$ 时, $\frac{a}{2k}$ 1 $\frac{a}{1}$ 1 $\frac{a}{3}$ 1 $\frac{a}{1}$ 2 $\frac{a}{5}$ 3 $\frac{a}{3}$ 2 $\frac{a}{2k}$ 1 $\frac{a}{2k}$ 3

$$=2+3(2+23-25)$$
 $=2+\frac{3}{1}$ $=2+\frac{2(1-4k-1)}{1-4}$ $=22k-1$,故对任意 $k-N$,,

由①得
$$2^{2k}$$
1 $2a$ 2 k 1 2^{2k} 2 2^{2k} 1 2^{2k} 2 2^{2k} 1 2^{2k} 1 2^{2k} 2 2^{2k} 1 2^{2k} 1 2^{2k} 2 2^{2k} 3 2^{2k} 3

S (a a) (a a) (a a)
$$\frac{k}{2}$$
 因此, $\frac{k}{2}$,于是

$$S_{2k \ 1}$$
 S_{2k} a_{2k} $\frac{k \ 1}{2}$ $2^{2k \ 1}$...

$$\frac{S}{a} = \frac{S}{a} = \frac{\frac{k}{2^{k-1}}}{a} = \frac{\frac{k}{2}}{2^{2k-1}} = \frac{\frac{k}{2}}{2^{2k-1}} = \frac{\frac{k}{2}}{2^{2k}} = \frac{\frac{k}{2^{2k}}}{2^{2k}} = \frac{k}{2^{2k}} = \frac{1}{2^{2k}} = \frac{1$$

$$\frac{S}{a}$$
 $\frac{S}{a}$ $\frac{S}{a}$ $\frac{S}{a}$ $\frac{S}{a}$ $\frac{S}{a}$ $\frac{1}{3}$ $\frac{1$

12. (2011年高考全国卷文科 17) (本小题满分 10 分)(注意: 在试题卷上作答无效)

设数列
$${\rm a}$$
 的前 N 项和为 ${\rm S}$,已知 ${\rm a}$ 6, 6a a 30, ${\rm x}$ a ${\rm n}$ 和 ${\rm S}$ 。

 $\begin{cases} a_1q=6,\\\\ 6a_1+a_1q^2=30,\\\\ \text{解析} \end{cases}$ 解析 】设等比数列 $\begin{cases} a_n \end{cases}$ 的公比为 q ,由题 $\begin{cases} 6a_1+a_1q^2=30,\\\\ 6a_1+a_1q^2=30,\\\\ \end{cases}$ 解得 $\begin{cases} a_1 = 3, & \exists a_1 = 2, \\ a_1 = 2, & \exists a_2 = 3. \end{cases}$

所以
$$a_1 = 3$$
。则 $a_n = a_1 q^{n-1} = 3 \times 2^{n-1}$. $S_n = \frac{a_1(1-q^n)}{1-q} = 3 \times 2^n - 3$

$$a_1 = 2$$
, and $a_n = a_1 q^{n-1} = 2 \times 3^{n-1}$. $S_n = \frac{a_1(1-q^n)}{1-q} = 3^n - 1$

- 13. (2011 年高考重庆卷文科 16) (本小题满分 13 分, (Ⅰ) 小间 7 分, (Ⅱ) 小问 6 分) 设 $\{a^n\}$ 是公比为正数的等比数列, $a_1 = 2$, $a_3 = a_2 + 4$ 。
 - (I) 求 $\{a_n\}$ 的通项公式,
 - (II) 设 ${b_n}$ 是首项为 1,公差为 2 的等差数列,求数列 ${a_n+b_n}$ 的前 n 项和 a_n 。

解: (I) 设 q 为等比数列 $\{a_n\}$ 的公比,则由 $a_1=2, a_3=a_2+4$ 得 $2q^2=2q+4$.

$$pq^2-q-2=0$$
, 解得 $q=2$ 或 $q=-1$ (舍去), 因此 $q=2$.

所以 $\{a_n\}$ 的通项为 $a_n = 2 \cdot 2^{n-1} = 2^n (n \in N^*).$

(II)
$$S_n = \frac{2(1-2^n)}{1-2} + n \times 1 + \frac{n(n-1)}{2} \times 2.$$

$$=2^{n+1}+n^2-2$$
.

【2010年高考试题】

S 1. (2010 辽宁文数)(3)设 n 为等比数列 n 的前 n 项和,已知 m 3S m 4 m 4

 $3S_2$ a 2 ,则公比 q

- (A) 3
- (B) 4 (C) 5
- (D) 6

答案: B.

解析:两式相减得,

- 2. (2010 全国卷 2 文数) (6) 如果等差数列 ^a 中, ^a + ^a + ^a = 12, 那么 ^a + ^a + ···· $+ a_{7} =$
 - (A) 14
- (B) 21 (C) 28 (D) 35

【答案】C

【解析】: a a a 12,

$$a_{7}$$
 a_{1} a_{2} a_{7} a_{7} a_{1} a_{7} a_{4} a_{4} a_{5} a_{4} a_{5} a_{4} a_{5} a_{5

- 3. (2010 安徽文数)..(5) 设数列 ^{a } 的前 n 项和 ⁿ ⁿ ,则 ^a 的值为
- (A) 15
- (B) 16 (C) 49
- (D) 64

【答案】A

- 4. (2010 重庆文数) (2) 在等差数列 $_{\rm n}$ 中, $_{\rm 1}$ $_{\rm 9}$ $_{\rm 5}$ 的值为
- (A) 5

(B) 6

(C) 8

(D) 10

解析: 由角标性质得 $\frac{a}{1}$ $\frac{a}{9}$ $\frac{2a}{5}$, 所以 $\frac{a}{5}=5$

- 5. (2010 浙江文数) (5) 设 ⁿ 为等比数列 ^a 的前 n 项和, ^{8a} a 0 则 ⁵ S
- (A) 11

(B) - 8

(C) 5

(D) 11

解析: 通过 8a $_{5}$ 0 , 设公比为 q , 将该式转化为 8a $_{2}$ $_{2}$ q $_{3}$ 0 , 解得 q =-2, 带入所求式可知答案选 A, 本题主要考察了本题主要考察了等比数列的通项公式与前 n 项和 公式。

 $a_{4} a_{5} a_{6} =$ 则

- (A) $5\sqrt{2}$
- (B) 7
- (C) 6 (D) $4\sqrt{2}$

【答案】A

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问: https://d.book118.com/28522110032 3012004