

第四章

平面向量、数系的扩充与复数的引入

第三节 平面向量数量积及平面向量应用

课前学案 基础诊疗

课堂学案 考点通关

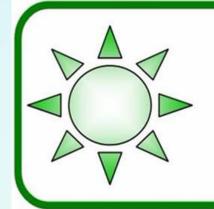
高考模拟 备考套餐

1.理解平面向量数量积的含义及其物理意义。了解平面向量的数量积与向量投影的关系。

考 纲

导 学

- 2.掌握数量积的坐标表达式,会进行平面向量数量积的运算。
- 3.能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系。
- 4.会用向量方法解决某些简单的平面几何问题。会用向量方法解决简单的力学问题与其他一些实际问题。



课前学案 基础诊疗

夯基固本 基础自测

知识梳理

1. 平面向量的数量积

若两个 1 _____ 非零 ___ 向量 a 与 b,它们的夹角为 θ ,则数量 2 ____ a |b | $cos\theta$

叫做 a = b 的数量积(或内积),记作 $\boxed{3}$ $\boxed{a \cdot b = |a||b|\cos\theta}$ 。

规定: 零向量与任一向量的数量积为 4 ____。

两个非零向量 a 与 b 垂直的充要条件是 $\boxed{5}$ $\boxed{a \cdot b = 0}$, 两个非零向量 a 与 b 平行

2. 平面向量数量积的几何意义

3. 平面向量数量积的重要性质

$$(1)e \cdot a = a \cdot e = \boxed{8} \qquad |a| \cos \theta$$

$$(2)$$
非零向量 a , b , $a \perp b \Leftrightarrow 9$ $a \cdot b = 0$

(3)当 a与 b 同向时, $a \cdot b = 10$ $a \mid b \mid$;

 $\sqrt{a \cdot a}$;

$$(4)\cos\theta = \boxed{14} \qquad \frac{a \cdot b}{|a||b|} \qquad ;$$

$$(5)|a \cdot b|$$
 $\boxed{15}$ $\underline{\qquad}$ $|a||b|$.

4. 平面向量数量积满足的运算律

$$(2)(\lambda a) \cdot b = \lambda(a \cdot b) = \boxed{17} \underline{a \cdot (\lambda b)} (\lambda 为实数);$$

$$(3)(a+b)\cdot c = \boxed{18} \underline{\qquad \qquad a\cdot c+b\cdot c}$$

5. 平面向量数量积有关性质的坐标表示

设向量 $a=(x_1, y_1), b=(x_2, y_2), 则 a·b=19 x_1x_2+y_1y_2, 由此得到:$

(1)若
$$a=(x, y)$$
, 则 $|a|^2=20$ x^2+y^2 , 或 $|a|=21$ $\sqrt{x^2+y^2}$ 。

(2)设
$$A(x_1, y_1)$$
, $B(x_2, y_2)$, 则 A , B 两点间的距离 $|AB| = |AB| = 22$ $\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$

(3)设
$$a=(x_1, y_1), b=(x_2, y_2), 则 a \bot b \Leftrightarrow 23 \underbrace{x_1x_2+y_1y_2=0}_{\circ}$$

助学微博

1个条件——两个非零向量垂直的充要条件

两个非零向量垂直的充要条件为: $a \perp b \Leftrightarrow a \cdot b = 0$ 。

2个结论——与向量夹角有关的两个结论

(1)若 $a \cdot b > 0$,则 $a \to b$ 的夹角为锐角或 0° ;

(2)若 a·b < 0,则 a 与 b 的夹角为钝角或 180°。

4 个注意点——向量运算中应注意的四个问题

- (1)在求 $\triangle ABC$ 的三边所对应向量的夹角时,要注意是三角形的内角还是外角。如在等边 $\triangle ABC$ 中,AB与BC的夹角应为 120°而不是 60°。
- (2)在平面向量数量积的运算中,不能从 $a \cdot b = 0$ 推出 a = 0 或 b = 0 成立。实际上由 $a \cdot b = 0$ 可推出以下四种结论: ①a = 0, b = 0; ②a = 0, $b \neq 0$; ③ $a \neq 0$, b = 0; ④ $a \neq 0$, $b \neq 0$, 但 $a \perp b$ 。
- (3)实数运算满足消去律: 若 bc=ca, $c\neq 0$, 则有 b=a。在向量数量积的运算中, 若 $a\cdot b=a\cdot c(a\neq 0)$, 则不一定得到 b=c。
- (4)实数运算满足乘法结合律,但平面向量数量积的运算不满足乘法结合律,即 $(a \cdot b) \cdot c$ 不一定等于 $a \cdot (b \cdot c)$,这是由于 $(a \cdot b) \cdot c$ 表示一个与 c 共线的向量,而 $a \cdot (b \cdot c)$ 表示一个与 a 共线的向量,而 c 与 a 不一定共线。

| 基础自测

- 1. 下列四个命题中真命题的个数为(
- ①若 $a \cdot b = 0$,则 $a \perp b$:
- ②若 $a \cdot b = b \cdot c$,且 $b \neq 0$,则 a = c;
- $(3(a \cdot b) \cdot c = a \cdot (b \cdot c);$
- $(4)(\boldsymbol{a}\cdot\boldsymbol{b})^2 = \boldsymbol{a}^2\cdot\boldsymbol{b}^2$
- A. 4 B. 2

C. 0

D. 3

解析: $a \cdot b = 0$ 时, $a \perp b$, 或 a = 0, 或 b = 0。故①命题错。

 $a \cdot b = b \cdot c$, $b \cdot (a - c) = 0$.

又 $:b\neq 0$, :a=c, 或 $b\perp (a-c)$ 。故②命题错误。

 $: a \cdot b = b \cdot c$ 都是实数,故($a \cdot b$)·c 是与c 共线的向量, $a \cdot (b \cdot c)$ 是与a 共线的向量,

 $\therefore (a \cdot b) \cdot c$ 不一定与 $a \cdot (b \cdot c)$ 相等。

故③命题不正确。

 $: (a \cdot b)^2 = (|a||b|\cos\theta)^2 = |a|^2|b|^2\cos^2\theta \leq |a|^2 \cdot |b|^2 = a^2 \cdot b^2 \text{. bull} 命题不正确。$

答案: C

2. 在
$$\triangle ABC$$
中, $AB=3$, $AC=2$, $BC=\sqrt{10}$,则 $\overrightarrow{AB}\cdot\overrightarrow{AC}=($

A.
$$-\frac{3}{2}$$
 B. $-\frac{2}{3}$ C. $\frac{2}{3}$ D. $\frac{3}{2}$

解析: 在 $\triangle ABC$ 中,

$$\cos \angle BAC = \frac{AB^2 + AC^2 - BC^2}{2AB \cdot AC} = \frac{9 + 4 - 10}{2 \times 3 \times 2} = \frac{1}{4},$$

$$\therefore \overrightarrow{AB} \cdot \overrightarrow{AC} = |\overrightarrow{AB}| |\overrightarrow{AC}| \cos \angle BAC = 3 \times 2 \times \frac{1}{4} = \frac{3}{2}.$$

答案: D

3. 已知平面向量 a=(1, -3), b=(4, -2), $\lambda a+b$ 与 a 垂直,则 $\lambda=($

A. -1 B. 1 C. -2 D. 2

解析: $\lambda a + b = (\lambda + 4, -3\lambda - 2)$ 。

 $\therefore \lambda a + b = a$ 垂直, $\therefore (\lambda a + b) \cdot a = 10\lambda + 10 = 0$ 。

 $: \lambda = -1$

答案: A

4. 已知 a=(2,3), b=(-4,7), 则 a 在 b 上的投影为()

A.
$$\sqrt{13}$$
 B. $\frac{\sqrt{13}}{5}$ C. $\frac{\sqrt{65}}{5}$ D. $\sqrt{65}$

解析:
$$|a|\cos\theta = \frac{a \cdot b}{|b|} = \frac{2 \times (-4) + 3 \times 7}{\sqrt{(-4)^2 + 7^2}} = \frac{13}{\sqrt{65}} = \frac{\sqrt{65}}{5}$$
.

答案: C

5. 已知|a|=1, |b|=6, $a \cdot (b-a)=2$, 则向量 a = b 的夹角是(A. $\frac{\pi}{6}$ B. $\frac{\pi}{4}$ C. $\frac{\pi}{3}$ D. $\frac{\pi}{2}$

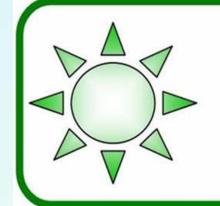
解析: $a\cdot(b-a)=a\cdot b-a^2=2$,

$$\therefore a \cdot b = 2 + a^2 = 3$$

$$\therefore \cos \langle a, b \rangle = \frac{a \cdot b}{|a||b|} = \frac{3}{1 \times 6} = \frac{1}{2}$$

 $\therefore a = b$ 的夹角为 $\frac{\pi}{3}$ 。

答案: C



课堂学案 考点通关

考点例析 通关特训

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问: https://d.book118.com/307164150163006066