
To wait for Mach3 to finish what you've started
A frequent requirement is to have to wait for Mach3 when doing several commands, to keep them executing in order. The:

Loop is the typical way of doing this.

ex:

However, this causes the system to make millions of calls to the subsystem to determine if Mach3 is finished. The CPU load
rises terribly. A solution is to wait for 100ms or so each time you check unless you need a very tight response time. The solution
is to use a syntax as follows..

This will lower your CPU load a great deal and allow things to be much more robust.

For accessing the screen controls
As you may have seen in example code, a macro read and change the data in a DRO. It can also read the state of any LED and
simulate the action of clicking a screen button. To access these operations on Mach2 controls you use the codes used internally
by Mach3 and its Screen Designer for the DRO, LED or button operation you want to use.

There are, for historical reasons, two different ranges of numbers for each type of control. Some LEDs and DROs start at 800
and some buttons start at 1000. You do not need to worry about this. As we say it is historical!

DROs and LEDs can be defined that have no meaning to Mach3 being solely for you use. There are 255 of each denoted by
codes 1000 to 1254. You must refer to them using special functions with "User" in the name to make it obvious that they are not
controlling Mach2 itself.

Although we use literal values (like 14) in the examples you are strongly advised to assign the values you want to use to
variables at the beginning of your macro and then use the variables in calls to the routines. This will make your program much
easier to read. Thus the first LED example in a complete script would be:

LEDs

While IsMoving
Wend

code "G0X100"
While IsMoving()
Wend

Declare Sub Sleep Lib "Kernel32" (ByVal dwMilliseconds As Long)
.
.
.
Code "G0X100"
While ismoving()
Sleep 100
Wend

JoyStickLED = 814
:
:
bJoy = GetOEMLed (JoyStickLEDFn)

Function GetOEMLED (ledOEMCode as Integer) as Boolean

页码，2/17Mach specific Subroutines/Functions grouped by purpose - MachCustomizeWiki

A common routine accesses system, OEM and User LEDs. ledOEMCode must be in the range 1000 to 1244 for user LEDs and
the codes given in this wiki for system and OEM LEDs. The result is True (i.e. non-zero if converted to an integer) if the LED
referred to is alight.

User LEDs, only, can be set on or off by:

If cond = 1 the LED will be on. If cond = 0 then it will be Off

Examples:

DROs

Choose the appropriate codes depending on whether you want to access a "system", an OEM or user DRO. droOEMCode will
be in the range 800 + for "system DROs and 1000 to 1254 for user DROss. The result is the current value displayed by the
DRO.

Choose the appropriate codes depending on whether you want to access a "system", an OEM or user DRO. droOEMCode will
be in the range 800 + for "system DROs and 1000 to 1254 for user DROss. The routine sets the expression provided for
newValue into the DRO. Not all DROs can be written. If you cannot type a value into the DRO on the screen (e.g. X Velocity =
806) then you cannot set it in a script.

This routine is provided to address the problem that VB Script is liable to represent small numbers (e.g. 0.0000012) in scientific
(exponent) notation. The routine forces the string to be decimal.

Example:

Button Commands

Cal;l the routine to perform the action equivalent to "pressing" a button. Mach3 is instructed by the script to perform the
function specified.

There is no provision for the trapping or reporting of errors but as most functions have an LED associated with them this can be
inspected by the script code to check that the required action has been performed.

Sub SetUserLED (ledUserCode as Integer, cond as Integer)

bJoy = GetOELed (814) ' set variable bJoy if Joystick is enabled
If GetOEMLed (29) Then ….. ' see if a Fixture is in use
Call SetUserLED (1002, 1) ' turn on user LED

Function GetOEMDRO (droOEMCode as Integer) as Double

Sub SetOEMDRO (droOEMCode as Integer, newValue as Double)

Sub KillExponent (result as String, smallNumber as String)

Call SetOEMDRO (818, GetOEMDRO (818) * 1.1) ' increase feedrate by 10%

Sub DoOEMButton (buttOEMCode as Integer)

页码，3/17Mach specific Subroutines/Functions grouped by purpose - MachCustomizeWiki

Very many "buttons" are toggles or cycle through a range of possible states or values. A loop containing inspection of an
associated LED can be used to set a particular state. Thi ample would be particularly suitable to be attached to a button.

Example:

Interrogating Mach's state

Interrogating Mach3 running modes

Returns a non-zero value if Mach3 is meter mode (Turn only) otherwise zero for radius mode. Diameter mode affects th
handling of all X coordinate values.

Interrogating Mach3 internal variables

The current value of Mach3 internal variables can be read using the GetParam function.

This returns a numeric value corresponding to the name of the given variable which is provided as a string (constant or variable)

The corresponding routine SetParam sets the value of the variable to newVal.

A list of recognised strings can be found at Get/SetParam() Vars

Examples:

Rem This sets the MPG jog on and the wheel to jog the Y axis
Rem There are actually more direct ways to do this in late releases
Rem of Mach2
JogTogButton = 174
JogMPGEn = 175
MPGJogOnLED = 57
MGPJogsY = 60
OK = False
For I = 1 to 2
 If Not GetOEMLED (MPGJogOnLED) Then
 Call DoOEMButton (JogMPGEn) ' try to enable
 Else
 OK = True ' MPG is enabled
 Exit For
 End If
Next I
Rem Could test of OK true here
OK = False
For I = 1 to 6 ' must get there after six axis tries
 If Not GetOEMLED (MPGJogsY) Then
 Call DoOEMButton (JogTogButton) ' try next one
 Else
 OK = True ' got right axis selected
 Exit For
 End If
Next I
Rem Could test OK here as well

Function IsDiameter() as Integer

Function GetParam (name as String) as Double

Sub SetParam (name as String, newVal as Double)

页码，4/17Mach specific Subroutines/Functions grouped by purpose - MachCustomizeWiki

Notice that the word "Param" is used here in a different sense to the Machine Parameters accessed by the # operator from within
a part program and in accessing the Q, R & S word "parameters" to a macro call.

Access to the machine G-code parameter block
Mach3 has a block of variables which can be used in part programs. They are identified by # followed by a number (the
parameter address). The contents of the Tool and Fixture tables are in these parameters but there are many values that can be
used by the writer of a part program. These machine variables can be accessed within macros by GetVar and SetVar.

The predefined parameter variables are defined the manuals Using Mach3Mill and Using Mach3Turn.

Examples:

Arguments of macro call
When a macro is called from the MDI line or within a part program then data can be passed to it by P, Q, and S words on the
line. The values of these words are "read" in the macro using the Param functions.

NOTE: There was a Bug in the S parameter that would cause the spindle to run at the S words number.

So as of Mach3 version: 3.042.011 that has been changed/Fixed The NE ram3 is "R".

Information to and from the user
Scripts can communicate with the operator by displaying a dialog box with a prompt into which the user can type numeric data.
The Question function prompts for one item. The GetCoord routine prompts for the values o and A coordinates.

Refer here to MsgBox etc built-in VB Script calls !!!

The other strategy, probably more suited to scripts attached to buttons, is to provide DROs of a screen into which data is set
before running the macro. These can of course also display results from the script.

User Intelligent Labels and Tickers enable messages to be displayed.

Rem interrogate drive arrangements
mechProp1 = GetParam ("StepsPerAxisX")
Rem make C acceleration be same as X for slaving
Call SetParam("AccelerationC", GetParam ("AccelerationX"))

Function GetVar (PVarNumber as Integer) as Double
Sub SetVar (PVarNumber as Integer, newVal as Double)

FixNumb = GetVar (5220) ' get current fixture number
Rem set X offset of fixture 2 to be same as fixture 1
Call SetVar (5241, GetVar (5221))
Rem increment a counter, say in a multiple part layout
Call SetVar (200, GetVar (200) + 1))

Function Param1 () as Double ' gets P word
Function Param2 () as Double ' gets Q word
Function Param3 () as Double ' gets S word

Function Param3 () as Double ' gets R word

页码，5/17Mach specific Subroutines/Functions grouped by purpose - MachCustomizeWiki

Dialog boxes

The string in prompt is displayed in a modal dialog titled "Answer this. The dialog contains an edit box. The value of the
function is set to the number in this when OK is clicked.

As with Question, a modal dialog titled "Enter Coordinates" displays prompt. This has four edit boxes labelle and A
into which values can be typed. GetCoord itself does not return the values to the macro code. These must be fetched by
GetXCoor, GetYCoor etc.

Outputting text, warnings etc.

Writes the message on the Error intelligent label and in the History log file.

Plays a Windows .WAV file (e.g. a chime to warn of an event or error). This feature must be enabled in Config>Logic

Speaks a text string. Requires Speech to be enabled in Config>Logic and a suitable sppech engine to be installed (e.g. the one
d with Office).

User defined DROs and LEDs

This technique is mainly applicable to wizards and scripts which are run from a user defined screen button.

A block of DRO OEM codes is allocated to 255 USER DROs (Ranged from 1000 through 1254) which are not used by Mach3
itself. These DROs, suitably labelled, can be placed on a screen.

The operator enters data into the DRO(s) before pressing a button or series of buttons to run the macro or macros. The macro(s)
access the data using GetUserDRO a plained above. The macro can also use SetUserDRO to update the data or return a
result in another DRO.

In addition there are 255 user LEDs which can be read and (unlike normal LEDs) written using GetUserLED and
SetUserLED.

This technique can, for example, be used to implement a totally al scheme to extend the Mach3 offset setting by Touch
with Correction. Suppose you have a probe with a 5 mm tip diameter which only trips in sideways movement (i.e. for X and Y)

Function Question (prompt as String) as Double

Sub GetCoord (prompt as String)

Function GetXCoor () as Double
Function GetYCoor () as Double
Function GetZCoor () as Double
Function GetACoor () as Double

Sub Message (text as String)

Sub PlayWave (pathname as String)

Sub Speak (text as String)

页码，6/17Mach specific Subroutines/Functions grouped by purpose - MachCustomizeWiki

以上内容仅为本文档的试下载部分，为可阅读页数的一半内容。如

要下载或阅读全文，请访问：https://d.book118.com/31704412100

5006151

https://d.book118.com/317044121005006151
https://d.book118.com/317044121005006151

