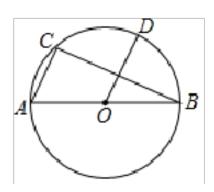
2020 年安徽省合肥市 C20 教育联盟中考数学二模试卷

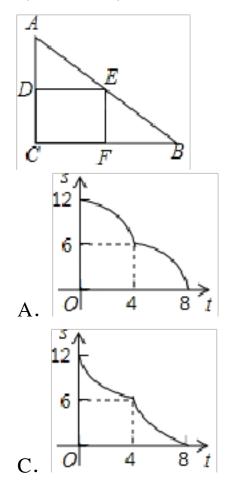
	. 选择题(共 10 小题			
1.	- 4 的绝对值是()		
	A. 4	B. $\frac{1}{4}$	C4	D. ±4
2.	计算 (-3a ²) ³ 结果	是 ()		
	A. $-9a^6$	B 27 <i>a</i> ⁶	C. 27 <i>a</i> ⁶	D 27 <i>a</i> ⁵
3.	如图,由4个大小相	同的正方体组成的几何	「体的主视图是()	
	正面			
	A.	В.	C.	D.
4.	2019 年末, 在中国武	代汉引发疫情的冠状病毒	毒,被命名为 <i>COVID</i> -	19 新型冠状病毒,冠
	状病毒的平均直径约	是 0.00000009 米.数据	号 0.00000009 学记数法:	表示为()
	A. 0.9×10^{-8}	B. 9×10-8	C. 9×10-7	D. 0.9×10^{-7}
5.	下列因式分解正确的	是()		
	A. $2ab^2 - 4ab = 2a$	$b^2 - 2b$)	B. $a^2+b^2=(a+b)$ (a - b)
	C. $x^2 + 2xy - 4y^2 = (x^2 + 2xy - 4y^2)$	$(z-2y)^{-2}$	D my ² +4my - 4m ²	$= -m (y-2)^2$
6.	为了解我市某中学"	书香校园"的建设情况	,在该校随机抽取了5	0 名学生,调查了解他
	们一周阅读课外书籍	的时间,并将调查结果	绘制成如图所示的频数	数分布直方图(每小组
	的时间包含最小值,	不包含最大值),根据图	图中信息估计该校 1500) 名学生中, 一周课外
	↑ 频数(学生人数)	时的人数约为()		
	12 10 10			
	0 2 4 6 8 时间	→ (/\Bt)		


C. 900

D. 1200

A. 300

B. 600

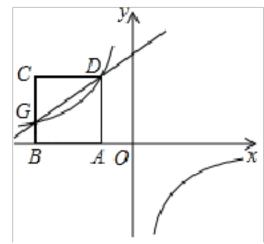

- 7. 某件羊毛衫的售价为 1000 元, 因换季促销, 商家决定降价销售, 在连续两次降价 x%后, 售价降低了 190 元,则 x 为(
 - A. 5
- B. 10
- C. 19
- D. 81
- 8. 如图, AB 是 $\bigcirc O$ 的直径, AB=4, AC 是的弦, 过点 O 作 OD // AC 交 $\bigcirc O$ 于点 D, 连接 *BC*, 若∠*ABC*=24°,则劣弧 *CD*的长为()

- B. $\frac{11\pi}{15}$ C. $\frac{13\pi}{15}$ D. $\frac{17\pi}{15}$
- 9. 当 a b = 3 时,关于 x 的一元二次方程 $ax^2 bx 2 = 0$ ($a \neq 0$) 的根的情况为 (
 - A. 有两个不相等的实数根
- B. 有两个相等的实数根

C. 没有实数根

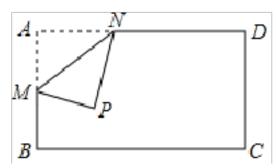
- D. 无法确定
- 10. 如图,在Rt $\triangle ABC$ 中, $\angle ACB$ =90°,AC=6,BC=8,矩形 CDEF 的顶点 E 在边 AB上,D,F 两点分别在边AC,BC 上,且 $\overline{DE} = \overline{AC}$,将矩形 CDEF 以每秒 1 个单位长度的 速度沿射线 CB 方向匀速运动,当点 C 与点 B 重合时停止运动,设运动时间为 t 秒,矩 形 CDEF 与 $\triangle ABC$ 重叠部分的面积为 S,则反映 S 与 t 的函数关系的图象为(

0 В. 6

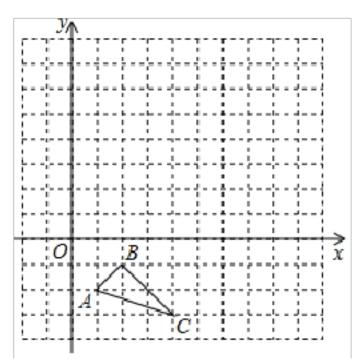

0

D.

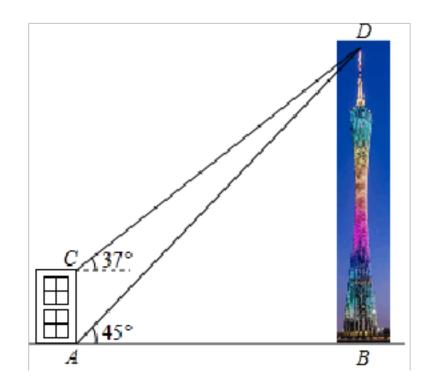
- 二. 填空题(共4小题)
- 11. 估算: √46≈_____(结果精确到 1).

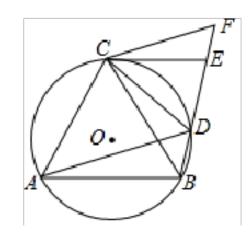

- 12. 命题: "如果 *m* 是自然数, 那么它是有理数", 则它的逆命题为_____.
- 13. 如图,正方形 ABCD 的顶点 A, B 在 x 轴的负半轴上,反比例函数 $\mathbf{y} = \frac{\mathbf{k_1}}{\mathbf{x}}$ $(k_1 \neq 0)$ 在第
 - 二象限内的图象经过正方形 ABCD 的顶点 D(m, 2) 和 BC 边上的点 $G(n, \frac{2}{3})$,直线 y

 $=k_2x+b$ $(k_2\neq 0)$ 经过点 D,点 G,则不等式 $\frac{\mathbf{k_1}}{\mathbf{x}} \leq \mathbf{k_2}\mathbf{x}+\mathbf{b}$ 的解集为______.



14. 如图,在矩形 ABCD 中,AB=2, $AD=2\sqrt{3}$,点 M 为 AB 的中点,点 N 为 AD 边上的一动点,将 $\triangle AMN$ 沿 MN 折叠,点 A 落在点 P 处,当点 P 在矩形 ABCD 的对角线上时,


AN 的长度为_____


- 三. 解答题(共9小题)
- 15. 解不等式: $\frac{2x-1}{4} < 3x + \frac{7}{2}$.
- 16. 程大位是珠算发明家,他的名著《直指算法统宗》详述了传统的珠算规则,确立了算盘用书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁. 意思是:有 100 个和尚分 100 个馒头,如果大和尚 1 人分 3 个,小和尚 3 人分 1个,正好分完,大、小和尚各有多少人?
- 17. 在平面直角坐标系中, $\triangle ABC$ 的三个顶点坐标分别为A (1, -2), B (2, -1), C (4, -3).
 - (1) 画出 $\triangle ABC$ 关于 x 轴对称的 $\triangle A_1B_1C_1$;
 - (2)以点 O 为位似中心,在网格中画出 $\triangle A_1B_1C_1$ 的位似图形 $\triangle A_2B_2C_2$,使 $\triangle A_2B_2C_2$ 与 $\triangle A_1B_1C_1$ 的相似比为 2: 1;
 - (3)设点 P(a,b) 为 $\triangle ABC$ 内一点,则依上述两次变换后点 P 在 $\triangle A_2B_2C_2$ 内的对应点 P_2 的坐标是_____.

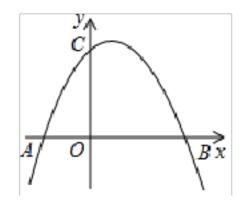
- 18. 观察以下等式: 第 1 个等式: $2+\frac{2}{3}=2^2\times\frac{2}{3}$; 第 2 个等式: $3+\frac{3}{8}=3^2\times\frac{3}{8}$; 第 3 个等式: $4+\frac{4}{15}=4^2\times\frac{4}{15}$; 第 4 个等式: $5+\frac{5}{24}=5^2\times\frac{5}{24}$; ……按照以上规律,解决下列问题:
 - (1) 写出第5个等式: _____;
 - (2) 写出你猜想的第n个等式: _____(用含n的等式表示),并证明.
- 19. 广州塔又称广州新电视塔,昵称小蛮腰,位于广州市海珠区赤岗塔附近,是中国第一高塔,世界第四高塔. 如图,广州塔 BD 附近有一大厦 AC 高 150 米,张强在楼底 A 处测得塔顶 D 的仰角为 45°,上到大厦顶 C 处测得塔顶 D 的仰角为 37°,求广州塔 BD 的高.(参考数据: $\sin 37$ ° ≈ 0.60 , $\cos 37$ ° ≈ 0.80 , $\tan 37$ ° ≈ 0.75)

- 20. 如图,四边形 ABDC 是 $\odot O$ 的内接四边形, $\angle BDC$ =120°,AB=AC,连接对角线 AD,BC,点 F 在线段 BD 的延长线上,且 CF=DF, $\odot O$ 的切线 CE 交 BF 于点 E.
 - (1) 求证: CE//AB;
 - (2) 求证: *AD=BD+CD*.

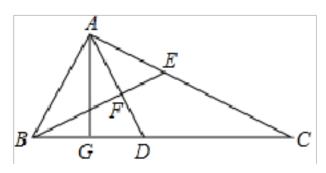
21. 为宣传普及新冠肺炎防治知识,引导学生做好防控.某校举行了主题为"防控新冠,从我做起"的线上知识竞赛活动,测试内容为 20 道判断题,每道题 5 分,满分 100 分,为了解八、九年级学生此次竞赛成绩的情况,分别随机在八、九年级各抽取了 20 名参赛学生的成绩已知抽查得到的八年级的数据如下:

80, 95, 75, 75, 90, 75, 80, 65, 80, 85, 75, 65, 70, 65, 85, 70, 95, 80, 75, 80.

为了便于分析数据,统计员对八年级数据进行了整理,得到了表一:


成绩等级	分数(单位:分)	学生数
D 等	$60 < x \le 70$	5
C 等	$70 < x \le 80$	a
$B \stackrel{\text{res}}{\Rightarrow}$	$80 < x \le 90$	b
A 等	90< <i>x</i> ≤100	2

九年级成绩的平均数、中位数、优秀率如下: (分数 80 分以上、不含 80 分为优秀)


年级	平均数	中位数	优秀率
八年级	77.5	c	<i>m</i> %
九年级	76	82.5	50%

- (1) 根据题目信息填空: *a*=_____, *c*=_____, *m*=______
- (2) 八年级王宇和九年级程义的分数都为 80 分,请判断王宇、程义在各自年级的排名哪位更靠前?请简述你的理由;
- (3) 八年级被抽取的 20 名学生中,获得 A 等和 B 等的学生将被随机选出 2 名,协助学校普及新冠肺炎防控知识,求这两人都为 B 等的概率.
- 22. 如图,在平面直角坐标系中,抛物线 $y = \frac{1}{2} x^2 + bx + c$ 与 x 轴交于 A, B (4, 0) 两点,与 y 轴交于点 C (0, 4).
 - (1) 求此抛物线的函数表达式及点A 的坐标;

(2)已知点 D (1, -1), 在直线 AD 上方的抛物线上有一动点 P (x, y) (1<x<4), 求 $\triangle ADP$ 面积的最大值.

- 23. 如图,在 $\triangle ABC$ 中, $AG \bot BC$,垂足为点 G,点 E 为边 AC 上一点,BE = CE,点 D 为 边 BC 上一点,GD = GB,连接 AD 交 BE 于点 F.
 - (1) 求证: ∠ABE=∠EAF;
 - (2) 求证: *AE*²=*EF*•*EC*;
 - (3) 若 CG=2AG, AD=2AF, BC=5, 求 AE 的长.

一. 选择题(共	10 小题)					
1 4 的绝对值	是()					
A. 4	$\mathbf{B.} \frac{1}{4}$	C4	D. ±4			
【分析】根据	绝对值的概念:数轴_	上某个数与原点的距离。	山做这个数的绝对值可直			
到答案.						
【解答】解:	- 4 的绝对值是 4,					
故选: A.						
2. 计算(- 3a²)	3结果是()					
A. $-9a^6$	B. $-27a^6$	C. 27 <i>a</i> ⁶	D 27 <i>a</i> ⁵			
【分析】根据	幂的乘方的法则计算周	月可.				
【解答】解:	$(-3a^2)^3 = -27a^6,$					
故选: B.						
3. 如图,由4个	·大小相同的正方体组》	成的几何体的主视图是	()			
正面						
A.	в.	C.	D.			
【分析】找到	从正面看所得到的图形	 『 即 可 , 注 意 所 有 的 看 至	间的棱都应表现在主视图。			
【解答】解:	【解答】解:从正面看易得有两层,底层两个正方形,上层右边一个正方形,右齐.					
故选: <i>C</i> .						
4. 2019 年末,在	E中国武汉引发疫情的	冠状病毒,被命名为 C	<i>OVID</i> - 19 新型冠状病毒			
状病毒的平均	直径约是 0.00000009	米. 数据 0.00000009 学	记数法表示为()			
A. 0.9×10-8	B. 9×10-8	C. 9×10-7	D. 0.9×10^{-7}			
【分析】绝对	值小于1的正数也可以	从利用科学记数法表示,	一般形式为 <i>a</i> ×10- <i>n</i> ,与:			

的数字前面的 0 的个数所决定.

【解答】解:数据 0.00000009 学记数法表示为 9×10-8.

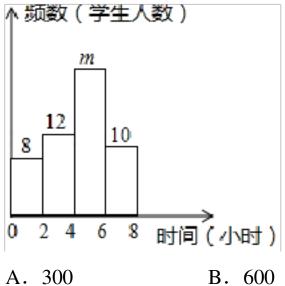
故选: B.

5. 下列因式分解正确的是()

A. $2ab^2 - 4ab = 2a (b^2 - 2b)$

B.
$$a^2+b^2=(a+b)(a-b)$$

C.
$$x^2+2xy-4y^2=(x-2y)^2$$
 D. $-my^2+4my-4m=-m(y-2)^2$


【分析】各式分解得到结果,即可作出判断.

【解答】解: A、原式=2ab (b-2), 不符合题意;

- B、原式不能分解,不符合题意;
- C、原式不能分解,不符合题意;
- D、原式= - $m(y-2)^2$,符合题意.

故选: D.

6. 为了解我市某中学"书香校园"的建设情况,在该校随机抽取了50名学生,调查了解他 们一周阅读课外书籍的时间,并将调查结果绘制成如图所示的频数分布直方图(每小组 的时间包含最小值,不包含最大值),根据图中信息估计该校 1500 名学生中,一周课外 阅读时间不少于4小时的人数约为()

- C. 900
- D. 1200

【分析】用被调查人数减去第1、2组人数即为课外阅读时间不少于4小时的人数,据此 用总人数乘以课外阅读时间不少于 4 小时的人数占被调查人数即可得.

【解答】解:根据图中信息估计该校 1500 名学生中,一周课外阅读时间不少于 4 小时的 人数约为 $1500 \times \frac{50-8-12}{50} = 900$ (人),

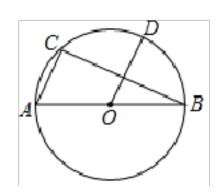
故选: C.

7. 某件羊毛衫的售价为 1000 元, 因换季促销, 商家决定降价销售, 在连续两次降价 x%后, 售价降低了 190 元,则 x 为 ()

B. 10

C. 19

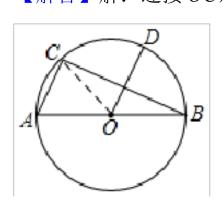
D. 81


【分析】根据该羊毛衫的原价及经过两次降价后的价格,即可得出关于x的一元二次方 程,解之取其较小值即可得出结论.

【解答】解: 依题意,得: 1000 (1-x%) ²=1000-190,

解得: $x_1 = 10$, $x_2 = 190$ (不合题意, 舍去).

故选: B.


8. 如图, AB 是 $\bigcirc O$ 的直径, AB=4, AC 是的弦, 过点 O 作 OD // AC 交 $\bigcirc O$ 于点 D, 连接 BC,若 $\angle ABC = 24^{\circ}$,则劣弧 CD 的长为 ()

B. $\frac{11\pi}{15}$ C. $\frac{13\pi}{15}$ D. $\frac{17\pi}{15}$

【分析】先根据圆周角定理求出 $\angle A$ 的度数,得出 $\angle BOD$ 和 $\angle BOC$ 的度数,由角的和差 可得 ZCOD 的度数,最后由弧长公式可得结论.

【解答】解: 连接 OC,

:AB 是 $\bigcirc O$ 的直径,

 $\therefore \angle ACB = 90^{\circ}$,

 \therefore $\angle ABC = 24^{\circ}$,

 $\therefore \angle A = 90^{\circ} - 24^{\circ} = 66^{\circ}$,

 $\therefore \angle BOC = 2 \times 66^{\circ} = 132^{\circ}$,

AC//OD,

 $\therefore \angle BOD = \angle A = 66^{\circ}$,

 $\therefore \angle COD = 132^{\circ} - 66^{\circ} = 66^{\circ}$,

AB=4,

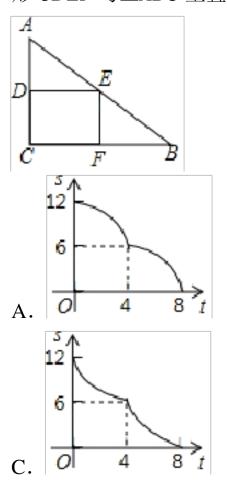
∴劣弧
$$CD$$
 的长= $\frac{66\pi \times 2}{180}$ = $\frac{11\pi}{15}$;

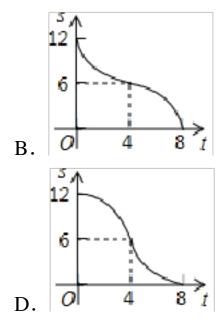
故选: B.

- 9. 当 a b = 3 时,关于 x 的一元二次方程 $ax^2 bx 2 = 0$ ($a \neq 0$) 的根的情况为 ()
 - A. 有两个不相等的实数根
- B. 有两个相等的实数根

C. 没有实数根

D. 无法确定

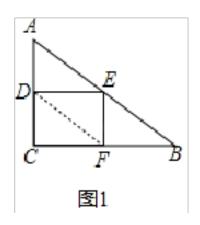

【分析】计算根的判别式得到 $\triangle = b^2 + 8a$,利用 a - b = 3 变形为 $\triangle = b^2 + 8b + 24 = (b + 4)$ $^2 + 8 > 0$,即可求得答案.


【解答】解: $: ax^2 - bx - 2 = 0 \ (a \neq 0),$

- $\therefore \triangle = b^2 + 8a$,
- a b = 3
- $\therefore a = b + 3$,
- $\triangle = b^2 + 8b + 24 = (b+4)^2 + 8 > 0$
- ::该方程有两个不相等的实数根,

故选: A.

10. 如图,在 $Rt\triangle ABC$ 中, $\angle ACB$ = 90°, AC = 6, BC = 8,矩形 CDEF 的顶点 E 在边 AB 上,D,F 两点分别在边 AC,BC 上,且 EF = AC ,将矩形 CDEF 以每秒 1 个单位长度的速度沿射线 CB 方向匀速运动,当点 C 与点 B 重合时停止运动,设运动时间为 t 秒,矩形 CDEF 与 $\triangle ABC$ 重叠部分的面积为 S,则反映 S 与 t 的函数关系的图象为(

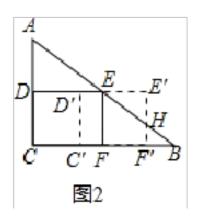


【分析】证明△DEF \cong $\triangle BFE$ (AAS),则 $DE = FB = CF = \frac{1}{2}BC = 4$,分 $0 \leqslant t \leqslant 4$ 、 $4 \leqslant t \leqslant 8$

两种情况,分别求出函数表达式,即可求解.

【解答】解: 如图 1, 连接 DF,

$$\therefore \frac{EF}{DE} = \frac{AC}{BC}, \quad \text{th } \tan B = \tan \angle EDF,$$


- ∴ $\angle B = \angle EDF$, $\overrightarrow{m} \angle DEF = \angle EFB = 90^{\circ}$, EF = EF,
- $\therefore \triangle DEF \cong \triangle BFE \ (AAS),$

$$\therefore DE = FB = CF = \frac{1}{2}BC = 4$$
,即点 $F \neq BC$ 的中点,

$$EF = FB \tan B = 4 \times \frac{6}{8} = 3$$

故矩形 DCFE 的面积为 3×4=12;

当 0≤*t*≤4 时,如图 2,

设直线 AB 交 D' C' F' E' 于点 H,

则
$$EE' = t$$
, $HE' = EE' \tan \angle E' EH = EE' \tan B = \frac{3}{4}t$

$$S = S_{\text{EH}} = 12 - \frac{1}{2} \times t \times \frac{3}{4} t = 12 - \frac{3}{8} t^2$$

该函数为开口向下的抛物线, 当 t=4 时, S=6;

当4<*t*≤8时,

同理可得:
$$S = \frac{3}{8} (8 - t)^2$$
,

该函数为开口向上的抛物线;

故选: D.

- 二. 填空题(共4小题)
- 11. 估算: $\sqrt{46} \approx __7$ (结果精确到 1).

【分析】由于 36 < 46 < 49,所以得到 $\sqrt{46}$ 的整数部分是 6,然后即可判断出所求的无理数的大约值.

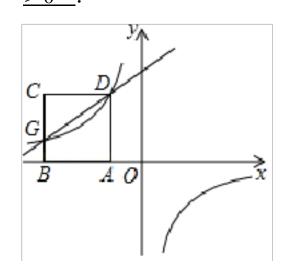
【解答】解: ::36<46<49,

∴ $\sqrt{46}$ 的整数部分是 6,

6.72 = 44.89, 6.82 = 46.25,

 $\therefore \sqrt{46} \approx 7$

故答案为7.


12. 命题: "如果 m 是自然数,那么它是有理数",则它的逆命题为 如果 m 是有理数,那么它是自然数 __.

【分析】把一个命题的条件和结论互换就得到它的逆命题.

【解答】解:命题:"如果m是自然数,那么它是有理数",则它的逆命题为如果m是有理数,那么它是自然数;

故答案为: 如果 m 是有理数, 那么它是自然数.

13. 如图,正方形 ABCD 的顶点 A, B 在 x 轴的负半轴上,反比例函数 $y = \frac{k_1}{x}$ $(k_1 \neq 0)$ 在第二象限内的图象经过正方形 ABCD 的顶点 D (m, 2) 和 BC 边上的点 G $(n, \frac{2}{3})$,直线 $y = k_2x + b$ $(k_2 \neq 0)$ 经过点 D,点 G,则不等式 $\frac{k_1}{x} \leq k_2x + b$ 的解集为 $\frac{-3 \leq x \leq -1}{x}$ $\frac{1}{x} \leq k_2x + b$ 的解集为 $\frac{-3 \leq x \leq -1}{x}$ $\frac{1}{x} \leq k_2x + b$ 的解集为 $\frac{-3}{x} \leq x \leq -1$ 或 $x \leq x \leq -1$ $\frac{1}{x} \leq x \leq -1$

【分析】利用正方形 ABCD 的顶点 D 的坐标得到正方形的边长为 2,则 G 点坐标表示为 $(n-2, \frac{2}{3})$,则根据反比例函数图象上点的坐标特征得到 $2m=\frac{2}{3}$ (m-2),求出 m 得到 $G(-3, \frac{2}{3})$,D(-1, 2),然后结合函数图象,写出一次函数图象在反比例函数图象上方所对应的自变量的范围(含两图象交点的横坐标).

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问: https://d.book118.com/32805700111 6006027