= T.Roy
» Masters Degree in Computer Engineering
= 20 years experience in system software development
= 10 years international teaching experience
= Specialization in Windows Driver Development and
Debugging
= Founder of CodeMachine
= CodeMachine Inc.
= Consulting and Training Company
= Based in Palo Alto, CA, USA
= Custom Driver Development and Debugging Services

= Corporate on-site training in Windows Internals,
Networking, Device Drivers and Debugging

» Internals Track
= Windows User Mode Internals
= Windows Kernel Mode Internals

= Debugging Track
= Windows Basic Debugging
= Windows User Mode Debugging
= Windows Kernel Mode Debugging

= Development Track

Windows Network Drivers

Windows Kernel Software Drivers
Windows Kernel Filter Drivers
Windows Driver Model (WDM)
Windows Driver Framework (KMDF)

= The problem

= Developer and Technical support folks have to deal with
crashes and hangs day in & day out

= In many cases ONE crash dump is all they have to root cause
a problem

= Often critical pieces of information that are required to nail
down a problem is missing from that one crash dump

'So what can the developers do to help the
support folks do their job better and faster ?

= This talk covers some simple programming techniques
= To improve diagnosability of your code
= To help support folks get more out of the crash dumps

= To enable them determine root cause of an issue from a
single crash dump

= So they don’t have to ask the customer to reproduce the
problem again to get them yet another crash dump

= In-memory data logging

= Preventing overwrite of important information

= Making data easily locatable and identifiable

= Logging relevant data and presenting it properly

= Complementing the OS’s data tracking

= Understanding OS support for run time data capture
= Capturing performance related data

[Techniques discussed here clearly apply to kernel
mode drivers but ...

_They can be easily adapted to user mode code as well)

Information Presentation
= State Logging
Run Time Stack Traces

= Timing Information

= Memory Trace Buffers
= Freed Pool Memory
Lock Owners

= Structure Tracking

= Crash Dumps offer a temporal snapshot of a system
= Provides no historical information
= Often historical events are critical to root causing issues

= Log run time information into memory trace buffers
= Non-Paged buffers available in kernel and complete dumps

= Use circular buffer with wrap around feature
= Retains most recent events by replacing old ones
= Good compromise between memory usage & history length

= Avoid locking when logging events in memory
= Costly due to IRQL changes
= Use Interlocked operations instead

= Trace buffer information can be retrieved using ‘dt -a’
= Enable/Disable logging code using registry keys
= Kernel internally uses this type of logging

= Data Structures _
g_History

(#define MY_HISTORY_MAX 32 0

typedef struct _MY_HISTORY {
PVOID Information;
} MY_HISTORY, *PMY_HISTORY;

MY_HISTORY g_History[MY_HISTORY_MAX];
'ULONG g_Index = 0;

MY_HISTORY_MAX

J

= Function g_Index

—> \/

rLoggingFunction(PVOID Information)
{
ULONG Index = InterlockedIncrement (&g_Index) ;
PMY_HISTORY History =
&g_History[Index % MY_HISTORY_MAX];
History->Information = Information;

PLEAB AR SRR TS, AW RSB —FEHNE.
B RREAERA, BiH: https://d. book118. com/33807603613
7006106

https://d.book118.com/338076036137006106
https://d.book118.com/338076036137006106

