
Speaker Introduction

Copyright © 2008 CodeMa minars

 T.Roy

 Masters Degree in Computer Engineering

 20 year perience in system software development

 10 years international teaching experience

 Specialization in Windows Driver Development and
Debugging

 Founder of CodeMachine

 CodeMachine Inc.

 Consulting and Training Company

 Based in Palo Alto, CA, USA

 Custom Driver Development and Debugging Services

 Corporate on-site training in Windows Internals,
Networking, Device Drivers and Debugging



CodeMachine Courses

Copyright © 2008 CodeMa minars

 Internals Track

 Windows User Mode Internals

 Windows Kernel Mode Internals

 Debugging Track

 Windows Basic Debugging

 Windows User Mode Debugging

 Windows Kernel Mode Debugging

 Development Track

 Windows Network Drivers

 Windows Kernel Software Drivers

 Windows Kernel Filter Drivers

 Windows Driver Model (WDM)

 Windows Driver Framework (KMDF)

Why This Talk…

Copyright © 2008 CodeMa minars

 The problem

 Developer and Technical support folks have to deal with
crashes and hangs day in & day out

 In many cases ONE crash dump is all they have to root cause
a problem

 Often critical pieces of information that are required to nail
down a problem is missing from that one crash dump

 This talk covers some simple programming techniques

 To improve diagnosability of your code

 To help support folks get more out of the crash dumps

 To enable them determine root cause of an issue from a
single crash dump

 So they don’t have to ask the customer to reproduce the
problem again to get them yet another crash dump

So what can the developers do to help the
support folks do their job better and faster ?

Key Takeaways…
 In-memory data logging

 Preventing overwrite of important information

 Making data easily locatable and identifiable

 Logging relevant data and presenting it properly

 Complementing the OS’s data tracking

 Understanding OS support for run time data capture

 Capturing performance related data

Copyright © 2008 CodeMa minars

Techniques discussed here clearly apply to kernel
mode drivers but …

They can be easily adapted to user mode code as well

Agenda

Copyright © 2008 CodeMa minars

 Memory Trace Buffers

 Freed Pool Memory

 Structure Tracking

 Information Presentation

 State Logging

 Lock Owners

 Run Time Stack Traces

 Timing Information

Memory Trace Buffers

Copyright © 2008 CodeMa minars

 Crash Dumps offer a temporal snapshot of a system

 Provides no historical information

 Often historical events are critical to root causing issues

 Log run time information into memory trace buffers

 Non-Paged buffers available in kernel and complete dumps

 Use circular buffer with wrap around feature

 Retains most recent events by replacing old ones

 Good compromis ween memory usage & history length

 Avoid locking when logging events in memory

 Costly due to IRQL changes

 Use Interlocked operations instead

 Trace buffer information can be retrieved using ‘dt –a’

 Enable/Disable logging code using registry keys

 Kernel internally uses this type of logging

 Example : In-Flight Recorder (IFR) Logs

 Example : PnP State History inside Device Node (DEVNODE)

Implementation

Copyright © 2008 CodeMa minars

 Function

#define MY_HISTORY_MAX 32

typedef struct _MY_HISTORY {
PVOID Information;

} MY_HISTORY, *PMY_HISTORY;

MY_HISTORY g_History[MY_HISTORY_MAX];
ULONG g_Index = 0;

 Data Structures

LoggingFunction(PVOID Information)
{

ULONG Index = InterlockedIncrement (&g_Index);
PMY_HISTORY History =

&g_History[Index % MY_HISTORY_MAX];
History->Information = Information;

}

. . .

g_Index

g_History

M
Y
_
H
I
S
T
O
R
Y
_
M
A
X

以上内容仅为本文档的试下载部分，为可阅读页数的一半内容。如

要下载或阅读全文，请访问：https://d.book118.com/33807603613

7006106

https://d.book118.com/338076036137006106
https://d.book118.com/338076036137006106

