Chapter 11

Analysis of Variance and Regression

11.1 a. The first order Taylor’s series approximation is

Varlg(Y)] ~ [¢/(O)? - VarY = [XO)2 - /0).

R
b. If we choose g(y) = gxu) = ) A%dx, then

Z
dg® _ d ¢ 1 1
VT = —ddx= —
B d ., P Puo

by the Fundamental Theorem of Calculus. Then, for any 6,
1
=2

_1 B
Var[g*(Y)] = P Ker w6 =1.

2
11.2 a. (D) =4, g*(y = \/g, Q‘AM = ZJ’LA’ Vargee(Y) = ‘i"z% -(A) = 1/4, independent of A.

b. To use the Taylor’s series approximation, we need to express everything in terms of 6 =
EY = np. Then v(6) = 6(1 - 6/n) and

dg(®) * 111 1
de N |1 _8 9 6 n 4n6(1-6/n)’
Therefore )
dg+(6) _ 1
Var[g*(Y)] » as ue) = 4n’

independent of 6, that is, independent of p.
c. () = K62, dgd(;e) = ¢ and Var[gx(Y)] ~ | 2. K62= K, independent of 6.
11.3 a. g,*(y) is clearly continuous with the possible exception of A = 0. For that value use

I’'Hopital’s rule to get

A —
Yol L8908

lim gy.
im0 A A—0
b. From Exercise 11.1, we want to find 1(1) that satisfies
z
y-1 v 1
= pP—dx
A @ V0
Taking derivatives
z

d -1 d v 1 = 1
d y-1 _ po L plax=
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Thus (y) = y24). From Exercise 11.1,

1 2
Var St o 2O g = gung o -y,

Note: If A = 1/2, 1{0) = 6, which agrees with Exercise 11.2(a). If A = 1 then () = 82,
which agrees with Exercise 11.2(c).

11.5 For the model
Yi=u+tutey; i=1,...,k j=1,...,n

take k= 2. The two parameter configurations

(u,, 2 = (10,5,2)
(u,n, ) = (7,8,5),

have the same values for u+ ©1 and u+ 12, so they give the same distributions for Y1 and Ya.

11.6 a. Under the ANOVA assumptions Y= 6; + 4, where i~ independent n(0, 0?), so Yy~
independent n(6; 62). Therefore the sample pdf is

i (vij —692 1 X
-1/2 - L L
(2no?) € 2 = @2no2) =n?exp - _q (yy — 62
i=1j=1 C 27 =1 j=1 5
1 >
= (@Qno2) =n?exp - _R nif?
27 =
1 XX 5 9 > -
X exp o0 yy+2702 . on;Y;.
z =1
Therefore, by the Factorization Theorem,
- _ - XX ,
LY, Y Y2
i g

is jointly sufficient for 4,..., &, . Since (1?] seees 1_/k_, Sﬁ is a 1-to-1 function of this
vector, (Y},..., Yk ,S }2,) is also jointly sufficient.
b. We can write

1 b L
@no?) =ni? exp - _g2 (yij — 692
27 =1 =1
1 X
= (2no?) =n? exp —ﬁ L (yy-y d+ly - 6D2
SIS
1 XK C >k J
= @Qno?)=nilexp -_g2 [yif—gi-]z exp -, 02 ndyi-612
2 =1 j=1 2 i=1

so, by the Factorization Theorem, Y_ln, i=1,...,n,1is independent of Yj— Y_i-,j: 1,...,n
so S§is independent of each Y;.

c. Just identify n;Y ;- with X; and redefine 6; as nif.



Second Edition 11-3

11.7 Let U;= Y_i- - 6. Then

_ _ _ X _
nllvi - v)-(-91°= ndui- v)2

i=1 =1

The U; are clearly n(0, 02/n). For K=2 we have

S = m(U - U)2 + n(Uz - U)?
_ n] U-l + anZ 2 n] U] + n2U2
- m U - +n2 Uz2-—
w e m +#Z’7,2
2 2
_ () nm
= (L -U22 m + 2
nm +nz nm +n

_ (-’

1 4+ 1 -

n ng

Since U — s ~ n(0,0*(1/my + 1/re)), S2/0%~ x iLet U be the weighted mean of k Us,
and note that

T . _
U1 = Ug+ N+ i1 — i)
1

P
where N, = o1 T Then

B+l B+ 2

_ _ n _
S, = n{U; _ U1 )? = ni (U;— ) - Nkﬂ Uir1 — W)
k+1

i=1 i=1
N —_
= Si+ leH_E(UkH -UR,
Nici

where we have expanded the square, noted that the cross-term (summed up to k) is zero, and
did a boat-load of algebra. Now since

Uier = Uk ~1(0, 2(1/nis1 +1/N9) =10, 2(Nis1/ 11 NO),

independent of S}, the rest of the argument is the same as in the proof of Theorem 5.3.1(c).
11.8 Under the oneway ANOVA assumptions, Yj ~ independent n(6; 02). Therefore

Yi ~

n 0i0°/ni  (Yys are independent with common c2.)
alY i

~ n aidi a%oz/ni '
j{ al;Zl X )k )
~ n aif;, &? a2/ ni

=1 i=1

All these distributions follow from Corollary 4.6.10.

11.9 a. From Exercise 11.8, > _ > i > i
T= aYi ~n aibi, o ai

>

and under Ho, ET = 6. Thus, under Ho,

P i 6
alYFl_ ~ty
S &
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P
where N=ni Therefore, the test is to reject Hp if

P
aYi— 6

Sp @/n;

> tN—k’g'

P P
. Similarly for Hy: a.0:< 6vs. Hi: aiB; > 6, we reject Ho if

P —
aYi—6

Sp o a@/n;

>t .
N —k,a

Let H i=1,...,4 denote the null hypothesis using contrast a;, of the form

X
HS:  aif& 20
J

If H} is rejected, it indicates that the average of 6,, 0s, 04, and 6s is bigger than 6; which
is the control mean. If all Ff's are rejected, it indicates that 0s > 6; for i=1,2, 3, 4. To see
this, suppose H} and H3) are rejected. This means 65 > % > 65; the first inequality is
implied by the rejection of H3 and the second inequality is the rejection of H}. A similar
argument implies 65 > 6, and 65 > 0;. But, for example, it does not mean that 6; > 63 or
65 > 6,. It also indicates that

%(%+94)>93, %(9;‘,+64+93)>92, i(a')+64+63+92)>61.

. In part a) all of the contrasts are orthogonal. For example,

ﬁaa_(n 11 1
2iU3; — L, TS, T 5" o
o 3’ 3 3

NI = O O
|
|
|
+

and this holds for all pairs of contrasts. Now, from Lemma 5.4.2,

1
X - X - 2X

Cov Gi Y, aiXYi- n ;iG>

which is zero because the contrasts are orthogonal. Note that the equal number of obser-
vations per treatment is important, since if n; 6= na for some i, ¢, then

A - >k _ > P
Cov ajiYi, ap;Y; = @it — =
. . . n;
=1 =1 =1

2 > ajiajoi

ng 6= (

=1

This is not a set of orthogonal contrasts because, for example, a: x a; = —1. However, each
contrast can be interpreted meaningfully in the context of the experiment. For example, a;

tests the effect of potassium alone, while as looks at the effect of adding zinc to potassium.

11.11 This is a direct consequence of Lemma 5.3.3.

11.12 a.

This is a special case of (11.2.6) and (11.2.7).
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b. From Exercise 5.8(a) We know that

oL ¢ 5oL ¢ -y
-1, YT 2k(k-D) v
Then
1 > - 1 xﬁ:_z—ilg_z_xi;z,—l
k-1, " %;c(k—l) o S L G- s/n
_ _in@- Y G-
S
which is distributed as Fx-1,v—x under Ho: 61 = -+ = 6. Note that
< KK
W = th,

i,? i=1 #=1

therefore 2, and ¢4, are both included, which is why the divisor is k( k-1), not MKT—) = k
Also, to use the result of Example 5.9(a), we treated each mean Y; as an observation, Wlth

overall mean Y . This is true for equal sample sizes.
11.13 a.

1 g P o
LOly = 9,2 e=? =1 ¥

Note that

@ 4 XK _
(yii- 0 * (y—)’+  ndfi-0)7?
=1 j=1 i=1j=1 =1
X
= SSW+ n{li-g)?

i=1

and the LRT statistic is
= (¢2 /62)Nk/2
where >
?2=SSW and "2=SSW+  nfi-y, )?=SSW+SSB.
Thus A < kif and only if SSB/SSW is large, which is equivalent to the F test.
b. The error probabilities of the test are a function of the 8is only through n = 6. The

distribution of F is that of a ratio of chi squared random variables, with the numerator
being noncentral (dependent on 7). Thus the Type II error is given by

_ n)/(k - 1) XX O/k-1 ., _
P =p GBS -k 2p SRS ok =

where the inequality follows from the fact that the noncentral chi squared is stochastically
increasing in the noncentrality parameter.
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11.14 Let Xi ~ n(6;, 02). Then from Exercise 11.11

P __ P ,
Cov =X, o quXi = o aiv;
P P 2
Var =, 9LX; = 0> 4, Var i‘/EiviXi =02 7,

and the Cauchy-Schwarz inequality gives

> - X >
aiv; d/a < i

If ai = cwi this is an equality, hence the LHS is maximized. The simultaneous statement is
equivalent to

P _ 2
i:1ai(yi-_9i) orana,...,a,
=M 1 k
k -_—
S, =1 &/n

and the LHS is maximized by a:=n:(y: — 6). This produces the F statistic.
11.15 a. Since & = F1 v, it follows from Exercise 5.19(b) that for k=2

Pl(k-DF,_1v2dz= P& = o

Soifa=2£ 20 the F probability is greater than a, and thus the a-level cutoff for the F
must be greater than £

v,a/2’
b. The only difference in the intervals is the cutoff point, so the Scheff’e intervals are wider.

C. Both sets of intervals have nominal level 1 — a, but since the Scheff’e intervals are wider,
tests based on them have a smaller rejection region. In fact, the rejection region is contained in

the trejection region. So the tis more powerful.
11.16 a. If ;= §; for all i, j, then 6;— ;=0 for all i, j, and the converse is also true.
b. Ho: @< ny®;and Hi: 0 uil®y°©.
11.17 a. If all of the means are equal, the Scheff’e test will only reject a of the time, so the ttests
will be done only a of the time. The experimentwise error rate is preserved.

b. This follows from the fact that the t tests use a smaller cutoff point, so there can be rejection
using the t test but no rejection using Scheff’e. Since Scheff’e has experimentwise level a,
the ttest has experimentwise error greater than a.

c. The pooled standard deviation is 2.358, and the means and t statistics are

Mean t statistic
Low Medium High Med-Low High-Med High-Low
3.51. 9.27 24.93 3.86 10.49 14.36

The t statistics all have 12 degrees of freedom and, for example, t12,.01 = 2.68, so all of the
tests reject and we conclude that the means are all significantly different.

11.18 a.
P(Y>aY>b) = P(Y>aY >b)/P(Y >Db)
P(Y >a)/P(Y >Db) (a>Db
> P(Y >a. (P(Y >b) <1

b. If ais a cutoff point then we would declare significance if Y > a. But if we only check if Y is

significant because we see a big Y (Y > b), the proper significance level is P(Y > a|Y > b),
which will show less significance than P(Y > a).
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11.19 a. The marginal distributions of the Y;pre somewhat stralgiatforward to derive. As Xi+1 ~
gamma(l;, 1, 1) and, independently, = °_; X; ~ gamma( Jp 1) (Example 4.6.8), we

only need to derive the distribution of the ratio of two independent gammas. Let X ~
gamma(Ar, 1) and Y ~ gamma(A2, 1). Make the transformation

LL:)C/y, v=Yy = X=uv, y=uv,

with Jacobian v. The density of (U, V) is
i1

_ 1
SV = fo5ray TNT(L)

To get the density of U, integrate with respect to v. Note that we have the kernel of a
gamma(1 + A2, 1/(1 + w), which yields

(uv)a'—1va2 -1 ve-uwve—v — VAT+A%-1 e—u(1 +u).

_ F(A] + Az) u/\l -1
flu) = T (1 + whita-

The joint distribution is a nightmare. We have to make a multivariate change of variable.
This is made a bit more palatable if we do it in two steps. First transform

Wi=X, WM=X1+X2, W3=X1+X2+X3, ..., Wh=Xi+Xo+ -+Xn
with

Xi=W, X2=Wo-W, Xz3=W3-W>, Xn= Wn— Wha,
and Jacobian 1. The joint density of the Wi is

¥
fw,wy, . wn) = F(AD(w w,_DAiTlewn |y <sup<---<wn

>

where we set wo = 0 and note that the exponent telescopes. Next note that

ur — u3 — ur — Wn =~ Wn

hW="", =", - Y_ s> Un= Whn,
w w2 n-l Wy
with
n
w=Q, v i=1,...,n-1, wn=yn
j=—i(1+yj)

Since each wi only involves y; with j = i, the Jacobian matrix is triangular and the
determinant is the product of the diagonal elements. We have

d_LUi L/n dwn

= i=1,...,n-1, . =1
dyi (1+y) (1+yj), 2 > ,n s dyn
and
! 1_1
1 Un A=
Yz e Yn) =
Fyp bt () er.l:—]](1+ )
N LW
xn7 ! oI ®) Yn Y
y Q@ —Q ; e Yn
. INO) (1 + y) J"Zi]q 1 +y)
i Un

l](1+yl) Aty



11-8 Solutions Manual for Statistical Inference

Factor out the terms with y» and do some algebra on the middle term to get

1

1 1 At -
ﬂy y "--,yn) = iAiﬁleﬁyn -
- " P Srly)
-1 L
ne 1 y, . 1
x Q -
2 T 1+yn =Q+w
o 1

x Q .
21 U+y) = +y)
We see that Ynis independent of the other Yi (and has a gamma distribution), but there
does not seem to be any other obvious conclusion to draw from this density.

b. The Y; are related to the F distribution in the ANOVA. For example, as long as the sum
of the A; are integers,

Xiv1 2Xi1 XA
Y'i: Pl—: 7 .:)C’F)iﬁ“'FAHI,Pl: A
j=1 ;i_] 2 j=1 ;(_] i A; =1
=17

Note that the F density makes sense even if the A; are not integers.
11.21 a.

Grandmeany = 18?554 = 1257
XX —
Total sum of squares = (yij -, )% = 1295.01.
=1j=1 )
KX —
Within 8§ = (yy - o)

1 1

X X X ,
= (y1j—3.508 +  (yoj—9.274F +  (y3;— 24.926)
1 1 1
= 1.089+2.189+63.459 = 66.74

> 2
Between SS = 5 —
. Wi—ya)
= 5(82.120+10.864 + 152.671) = 945.65-5 = 1228.25.
ANOVA table:

Source df SS MS F

Treatment 2 1228.25 614.125 110.42

Within 12 66.74 5.562

Total 14 1294.99

Note that the total SS here is different from above — round off error is to blame. Also,
F5,12 =110.42 is highly significant.
b. Completing the proof of (11.2.4), we have

X X X 3 B )
y—y) = (yy—; )+ (Ti-y))
=1 j=1 =1 j=1
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