
毕业论文 5000 字英文翻译怎么找啊

 篇一：毕业设计的 5000 字英文文献翻译

 外文及翻译

 英语原文 Android Application Fundamentals

 Android applications are written in the Java programming
language. The Android SDK tools compile the code —along with
any data and resource files —into an Android package, an
archive file with an .apk suffix. All the code in a
single .apk file is considered to be one application and is
the file that Android-powered devices use to install the
application. Once installed on a device, each Android
application lives in its own security sandbox: ? The Android
operating system is a multi-user Linux system in which each

 application is a different user.

 ? By default, the system assigns each application a
unique Linux user ID (the ID is used only by the system and
is unknown to the application). The system sets

 permissions for all the files in an application so that
only the user ID assigned to that application can access them.

 ? Each process has its own virtual machine (VM), so an
application's code runs in isolation from other applications.

 ? By default, every application runs in its own Linux
process. Android starts the process when any of the
application's components need to be executed, then shuts down
the process when it's no longer needed or when the system
must recover

 memory for other applications.

 In this way, the Android system implements the principle
of least privilege. That is, each application, by default,
has access only to the components that it requires to do its
work and no more. This creates a very secure environment in
which an application cannot access parts of the system for
which it is not given permission.

 However, there are ways for an application to share data
with other applications and for an application to access
system services:

 ? It's possible to arrange for two applications to share
the same Linux user ID, in which

 case they are able to access each other's files. To
conserve system resources,

 applications with the same user ID can also arrange to
run in the same Linux process

 and share the same VM (the applications must also be
signed with the same

 certificate).

 ? An application can request permission to access device
data such as the user's

 contacts, SMS messages, the mountable storage (SD card),
camera, Bluetooth, and

 more. All application permissions must be granted by the
user at install time.

 That covers the basics regarding how an Android
application exists within the system. The rest of this
document introduces you to: ? The core framework components
that define your application.

 ? The manifest file in which you declare components and
required device features for

 your application.

 ? Resources that are separate from the application code
and allow your application to

 gracefully optimize its behavior for a variety of device
configurations.

 Application Components

 Application components are the essential building blocks
of an Android application. Each component is a different
point through which the system can enter your application.
Not all components are actual entry points for the user and
some depend on each other, but each one exists as its own
entity and plays a specific role —each one is a unique
building block that helps define your application's overall
behavior.

 There are four different types of application components.
Each type serves a distinct purpose and has a distinct
lifecycle that defines how the component is created and
destroyed.

 Here are the four types of application components:

 Activities

 An activity represents a single screen with a user
interface. For example, an email application might have one
activity that shows a list of new emails, another activity to
compose an email, and another activity for reading emails.
Although the activities work together to form a cohesive user
experience in the email application, each one is independent
of the others. As such, a different application can start any
one of these

 共 21 页第 1 页

 activities (if the email application allows it). For
example, a camera application can start the activity in the
email application that composes new mail, in order for the
user to share a picture.

 An activity is implemented as a subclass of Activity and
you can learn more about it in the Activities developer guide.

 Services

 A service is a component that runs in the background to
perform long-running operations or to perform work for remote
processes. A service does not provide a user interface. For
example, a service might play music in the background while
the user is in a different application, or it might fetch
data over the network without blocking user interaction with
an activity. Another component, such as an activity, can
start the service and let it run or bind to it in order to
interact with it.

 A service is implemented as a subclass of Service and you
can learn more about it in the Services developer guide.
Content providers

 A content provider manages a shared set of application
data. You can store the data in the file system, an SQLite
database, on the web, or any other persistent storage
location your application can access. Through the content
provider, other applications can query or even modify the
data (if the content provider allows it). For example, the
Android system provides a content provider that manages the
user's contact information. As such, any application with the
proper permissions can query part of the content provider
(such as ContactsContract.Data) to read and write information
about a particular person.

 Content providers are also useful for reading and writing
data that is private to your application and not shared. For
example, the Note Pad sample application uses a content
provider to save notes.

 A content provider is implemented as a subclass of
ContentProvider and must implement a standard set of APIs
that enable other applications to perform transactions. For
more information, see the Content Providers developer guide.

 共 21 页第 2 页

 Broadcast receivers

 A broadcast receiver is a component that responds to
system-wide broadcast aements. Many broadcasts originate from
the system —for example, a broadcast aing that the screen has
turned off, the battery is low, or a picture was captured.
Applications can also initiate broadcasts —for example, to
let other applications know that some data has been
downloaded to the device and is available for them to use.

Although broadcast receivers don't display a user interface,
they may create a status bar notification to alert the user
when a broadcast event occurs. More ly, though, a broadcast when a broadcast event occurs. More ly, though, a broadcast

intended to do a very minimal amount of work. For instance,
it might initiate a service to perform some work based on the
event.

 A broadcast receiver is implemented as a subclass of
BroadcastReceiver and each broadcast is delivered as an
Intent object. For more information, see theBroadcastReceiver
class.

 A unique aspect of the Android system design is that any
application can start another application’s comp onent. For
example, if you want the user to capture a photo with the
device camera, there's probably another application that does
that and your application can use it, instead of developing
an activity to capture a photo yourself. You don't need to
incorporate or even link to the code from the camera
application. Instead, you can simply start the activity in
the camera application that captures a photo. When complete,
the photo is even returned to your application so you can use
it. To the user, it seems as if the camera is actually a part
of your application.

 When the system starts a component, it starts the process
for that application (if it's not already running) and
instantiates the classes needed for the component. For
example, if your application starts the activity in the
camera application that captures a photo, that activity runs

in the process that belongs to the camera application, not in
your application's process.

 Therefore, unlike applications on most other systems,
Android applications don't have a single entry point (there's
no main() function, for example).

 Because the system runs each application in a separate
process with file permissions that restrict access to other
applications, your application cannot directly activate a
component from another application. The Android system,
however, can. So, to activate a component in

 共 21 页第 3 页

 another application, you must deliver a message to the
system that specifies your intent to start a particular
component. The system then activates the component for you.

 Activating Components

 Three of the four component types —activities, services,
and broadcast receivers —are activated by an asynchronous
message called an intent. Intents bind individual components
to each other at runtime (you can think of them as the
messengers that request an action from other components),
whether the component belongs to your application or another.

 An intent is created with an Intent object, which defines
a message to activate either a specific component or a
specific type of component —an intent can be either explicit
or implicit, respectively.

 For activities and services, an intent defines the action For activities and services, an intent defines the action

may specify the URI of the data to act on (among other things
that the component being started might need to know). For
example, an intent might convey a request for an activity to
show an image or to open a web page. In some cases, you can
start an activity to receive a result, in which case, the
activity also returns the result in

 an Intent (for example, you can issue an intent to let
the user pick a personal contact and have it returned to
you—the return intent includes a URI pointing to the chosen
contact).

 For broadcast receivers, the intent simply defines the
aement being broadcast (for example, a broadcast to indicate
the device battery is low includes only a known action string the device battery is low includes only a known action string

 The other component type, content provider, is not
activated by intents. Rather, it is

 activated when targeted by a request from a
ContentResolver. The content resolver handles all direct
transactions with the content provider so that the component
that's performing

 transactions with the provider doesn't need to and
instead calls methods on

 the ContentResolver object. This leaves a layer of
abstraction between the content provider and the component
requesting information (for security).

 There are separate methods for activating each type of
component:

 共 21 页第 4 页

 篇二：毕业论文 5000 字英文文献翻译(c++)

 ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ 装 ┊ ┊ ┊ ┊ ┊

订 ┊ ┊ ┊ ┊ ┊ 线 ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊

 安徽工业大学 毕业设计（论文）说明书

 英文翻译

 英语原文：

 . Introducing Classes

 The only remaining feature we need to understand before
solving our bookstore problem is how to write a data
structure to represent our transaction data. In C++ we define
our own data structure by defining a class. The class
mechanism is one of the most important features in C++. In
fact, a primary focus of the design of C++ is to make it
possible to define class types that behave as naturally as
the built-in types themselves. The library types that we've
seen already, such as istream and ostream, are all defined as
classesthat is,they are not strictly speaking part of the
language.

 Complete understanding of the class mechanism requires
mastering a lot of information. Fortunately, it is possible
to use a class that someone else has written without knowing
how to define a class ourselves. In this section, we'll
describe a simple class that we canuse in solving our
bookstore problem. We'll implement this class in the
subsequent chapters as we learn more about types,expressions,

classes.

 To use a class we need to know three things:What is its
name? Where is it defined?

 What operations does it support?

 For our bookstore problem, we'll assume that the class is
named Sales_item and that it is defined in a header named
Sales_item.h.The Sales_item Class

 The purpose of the Sales_item class is to store an ISBN
and keep track of the number of copies sold, the revenue, and
average sales price for that book. How these data are stored
or computed is not our concern. To use a class, we need not
know anything about how it is implemented. Instead, what we
need to know is what operations the class provides.

 As we've seen, when we use library facilities such as IO,
we must include the associated headers. Similarly, for our
own classes, we must make the definitions associated with the
class available to the compiler. We do so in much the same
way. Typically, we put the class definition into a file. Any
program that wants to use our class must include that file.

 Conventionally, class types are stored in a file with a
name that, like the name of a program source file, has two
parts: a file name and a file suffix. Usually the file name
is the same as the class defined in the header. The suffix
usually is .h, but some programmers use .H, .hpp, or .hxx.
Compilers usually aren't picky about header file names, but
IDEs

┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ 装 ┊ ┊ ┊ ┊ ┊

订 ┊ ┊ ┊ ┊ ┊ 线 ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊

 安徽工业大学 毕业设计（论文）说明书

 sometimes are. We'll assume that our class is defined in
a file named Sales_item.h.Operations on Sales_item Objects

 Every class defines a type. The type name is the same as
the name of the class. Hence, our Sales_item class defines a
type named

 Sales_item. As with the built-in types, we can define a Sales_item. As with the built-in types, we can define a

are saying that item is an object of type Sales_item. We are saying that item is an object of type Sales_item. We are saying that item is an object of type Sales_item. We are saying that item is an object of type Sales_item. We

 In addition to being able to define variables of type
Sales_item, we can perform the following operations on
Sales_item objects:

 Use the addition operator, +, to add two Sales_items,Use
the input operator, << to read a Sales_item object,Use
the output operator, >> to write a Sales_item object,

 Use the assignment operator, =, to assign one Sales_item
object to another,

 Call the same_isbn function to determine if two
Sales_items refer to the same book.Classes are central to
most C++ programs: Classes let us define our own types that
are customizedfor the problems we need to solve, resulting in
applications that are easier to write and understand.Well-

types.A class defines data and function members: The data
members store the state associated with objectsof the class
type, and the functions perform operations that give meaning
to the data. Classeslet us separate implementation and
interface. The interface specifies the operations that the
classsupports. Only the implementor of the class need know or
care about the details of the implementation. This separation
reduces the bookkeeping aspects that make programming tedious
anderror-prone.

 Class types often are referred to as abstract data types.
An abstract data type treats the data(state) and operations
on that state as a single unit. We can think abstractly about
what the classd oes, rather than always having to be aware of
how the class operates. Abstract data types arefundamental to
both object-oriented and generic programming.

 Data abstraction is a programming (and design) technique
that relies on the separation of interfaceand implementation.
The class designer must worry about how a class is
implemented, but programmersthat use the class need not know
about these details. Instead, programmers who use a type need
to know only the type's interface; they can think abstractly
about what the type does rather than concretely about how the
type works.

 Encapsulation is a term that describes the technique of
combining lower-level elements to forma new, higher-level
entity. A function is one form of encapsulation: The detailed
actions performedby the function are encapsulated in the

以上内容仅为本文档的试下载部分，为可阅读页数的一半内容。如

要下载或阅读全文，请访问：https://d.book118.com/38807402605

1006113

https://d.book118.com/388074026051006113
https://d.book118.com/388074026051006113

