			1	
		专题 01	常用逻辑用语	
1、	四种命题的真假关系			
	①两个命题互为逆否命题,	它们具有	的真假性.	
	②两个命题为互逆命题或互	五否命题时,它	们的真假性	_
	例如: ∃t ∈ R t²2t-a <0 →	是假命题, 则等	实数 a 的取值范围	
2,	充分条件、必要条件与充分	必要条件的概念	Š	
	若 <i>p</i> ⇒ <i>q</i> ,则 j	<i>p</i> 是 <i>q</i> 的	条件, q 是 p 的	
	<i>p</i> 是 <i>q</i> 的	条件		
	<i>p</i> 是 <i>q</i> 的	条件		
	<i>p</i> 是 <i>q</i> 的	条件		
	<i>p</i> 是 <i>q</i> 的	条件		
3、	含有一个量词的命题的否定			
	命题		命题的否定	
	$\forall x \in M, \ p(x)$			

1	真值表中"p 且 q"全真	,一假	"p 或 q"全假	一首	
41	共用:化T // 且 // 土共	, IFX	$\nu \approx u \pm 1$		

5、"或""且"联结词的否定形式: "*p* 或 *q*"的否定是"_____"; "*p* 且 *q*"的否定是"_____".

专题 02 函数与导数

条件

 $p \not\Rightarrow q \perp q \Rightarrow p$ $p \Rightarrow q \perp q \not\Rightarrow p$

 $p \Leftrightarrow q$

 $p \not\Rightarrow q \perp q \not\Rightarrow p$

1. 函数单调性:(1)单调函数的定义

 $\exists x_0 \in M, p(x_0)$

		增函数	减函数			
Ī	定义	一般地,设函数 $f(x)$ 的定义域为 I ,如果	是对于定义域 I 内某个区间 D 上的任意两个			
	是 又	自变量的值 x_1 , x_2				
		当 $x_1 < x_2$ 时,都有,那么就说	当 $x_1 < x_2$ 时,都有,那么就说函			
		函数 $f(x)$ 在区间 D 上是增函数	数 $f(x)$ 在区间 D 上是减函数			

(2)函数单调性的两种等价形式 设任意 $x_1, x_2 \in [a, b]$ 且 $x_1 < x_2$,那么

- ① $\frac{f(x_1)-f(x_2)}{x_1-x_2}$ _____0 \Leftrightarrow f(x)在[a, b]上是增函数;
- ② $\frac{f(x_1)-f(x_2)}{x_1-x_2}$ _____0 \Leftrightarrow f(x) 在[a, b] 上是减函数.
- ③ $(x_1-x_2)[f(x_1)-f(x_2)] > 0 \Leftrightarrow f(x)$ 在[a, b]上是 函数;
- ④ $(x_1-x_2)[f(x_1)-f(x_2)]<0\Leftrightarrow f(x)$ 在[a,b]上是_____函数.
- 2. 讨论分段函数的单调性时,除注意各段的单调性外,还要注意 的函数值.
- 3.函数的奇偶性

奇偶性	定义	图象特点
偶函数	如果对于函数 $f(x)$ 的定义域内任意一个 x ,都有,那么函数 $f(x)$ 是偶函数	关于对称
奇函数	如果对于函数 $f(x)$ 的定义域内任意一个 x ,都有,那么函数 $f(x)$ 是奇函数	关于对称

4. 函数奇偶性的几个重要结论

(1)如果一个奇函数 $f(x)$ 在原点 $x=0$ 处有定义,即 $f(0)$ 有意义,那么一定有 $f(0)=$
(2) 奇函数在两个对称的区间上具有的单调性; 偶函数在两个对称的区间上具有的单
调性.
5. 有关对称性的结论
①若函数 $y=f(x+a)$ 为偶函数,则函数 $y=f(x)$ 关于
若函数 $y=f(x+a)$ 为奇函数,则函数 $y=f(x)$ 关于点
②若 $f(x) = f(2a - x)$,则函数 $f(x)$ 关于
若 $f(a+x)=f(a-x)$,则函数 $f(x)$ 关于对称. 若 $f(2a+x)=f(-x)$,则函数 $f(x)$ 关于对称.
若 $f(a+x)+f(a-x)=2$ b,则函数 $f(x)$ 关于点
(即括号内和定体现对称性)
6. 函数的周期性 对于函数 $y=f(x)$, 如果存在一个非零常数 T , 使得当 x 取定义域内的任何值时,
都有 $f(x+T)=f(x)$,那么就称函数 $y=f(x)$ 为周期函数,称为这个函数的周期.
①若 $f(x+a)=f(x+b)$,则函数 $f(x)$ 的周期为 $T=$
②若在定义域内满足 $f(x+a) = -f(x)$,则函数 $f(x)$ 的周期为 $T =$
③若在定义域内满足 $f(x+a) = -f(x)$,则函数 $f(x)$ 的周期为 $T =$
④若在定义域内满足 $f(x+a)+f(x)=k(k$ 为常数)函数 $f(x)$ 的周期为 $T=$
⑤若在定义域内满足 $f(x+a) = \frac{1}{f(x)}$,则函数 $f(x)$ 的周期为 $T =$
⑥若在定义域内满足 $f(x+a)$ $f(x)=1$ 函数 $f(x)$ 的周期为 $T=$
⑦若在定义域内满足 $f(x+a) = -\frac{1}{f(x)}$ ($a>0$),则函数 $f(x)$ 的周期为 $T=$
⑧若在定义域内满足 $f(x+a)$ $f(x)=k(k$ 为常数)函数 $f(x)$ 的周期为 $T=$
⑨若在定义域内满足 $f(x+a)$ $f(x+b)$ =k(k 为常数)函数 $f(x)$ 的周期为 $T=$
⑩若在定义域内满足 $f(x+a)+f(x+b)=k(k$ 为常数)函数 $f(x)$ 的周期为 $T=$
(即括号内差定体现周期性)
7.对称性与周期的关系:
(1) 若函数 $f(x)$ 的图象关于直线 $x=a$ 和直线 $x=b$ 对称,则函数 $f(x)$ 的周期为 $T=$,
(2)若函数 $f(x)$ 的图象关于点 $(a,0)$ 和点 $(b,0)$ 对称,则函数 $f(x)$ 的周期为 $T=$
(3)若函数 $f(x)$ 的图象关于点 $(a,0)$ 和直线 $x=b$ 对称,则函数 $f(x)$ 的周期为 $T=$
8.掌握一些重要类型的奇偶函数
6. 季度 至重安天至时 司 四函数 (1)函数 $f(x) = a^x + a^{-x}$ 为函数,函数 $f(x) = a^x - a^{-x}$ 为函数;
· · · · · · · · · · · · · · · · · · ·
(2)函数 $f(x) = \frac{a^x - a^{-x}}{a^x + a^{-x}} = \frac{a^{2x} - 1}{a^{2x} + 1} (a > 0 $ 且 $a \neq 1)$ 为函数;
(3)函数 $f(x) = \log_a \frac{b-x}{b+x}$ 为函数;
(4)函数 $f(x) = \log_a(\sqrt{x^2 + 1} \pm x)$ 为函数.
9.一元二次不等式恒成立的条件
(1)" $ax^2+bx+c>0$ ($a\neq 0$)恒成立"的充要条件是
(2)" $ax^2+bx+c<0$ ($a\neq 0$)恒成立"的充要条件是
$(3)a \ge f(x)$ 恒成立 $\Leftrightarrow a \ge \underline{\hspace{1cm}}$, $a \le f(x)$ 恒成立 $\Leftrightarrow a \le \underline{\hspace{1cm}}$.
$(4)a \ge f(x)$ \uparrow \downarrow
10.幂函数图象的性质 $\alpha < 0$, $y = x^{\alpha}$ 在第一象限内是单调递的.

$\alpha > 0$.	$y=x^{\alpha}$ 在第一	一象限内是单调递_	的
u- u,	y a LA	秋水门是干啊 烟	Н

11、.(1)
$$\sqrt[n]{a^n} = \begin{cases} n$$
为奇数, (2) $(\sqrt[n]{a})^n =$ _____(注意 a 必须使 $\sqrt[n]{a}$ 有意义).

12. 指数函数的图象与性质

11 2/2 [2]	当かり に/ハ	
	0< <i>a</i> <1	a>1
图象		
	5	三义域:
		值域:
性质		过定点
1	当 x>0 时,;	当 <i>x></i> 0 时,;
	当 x<0 时,	当 x<0 时,
	在 R 上是函数	在 R 上是函数

13. 对	*数的	性质	与运算	箟法	则
-------	-----	----	-----	----	---

(1)对数的性质① <i>a</i> log <i>aN</i> =	;	$2\log_a a^N = \underline{\hspace{1cm}}$	(a > 0,	且 $a\neq 1$);	③零和负数没有对数.
------------------------------------	---	--	---------	----------------	------------

- (2)对数的运算法则(a>0,且 $a\ne1$,M>0,N>0)
- $\bigcirc \log_a(M\cdot N) = \underline{\hspace{1cm}};$
- $2\log_a \frac{M}{N} = \underline{\hspace{1cm}}$
- $\Im \log_a M^n = \underline{\qquad} (n \in \mathbf{R}).$
- (3)对数的重要公式
 - ①换底公式: $\log_b N = ____a$, b 均大于零且不等于 1);
 - $2\log_a b =$
 - (4) 指数式与对数式互化: $a^x = N \Leftrightarrow x =$
 - (5) 对数运算的一些结论:

$(1)\log_{a^m}b^n = \underline{\hspace{1cm}}$	$2\log_a b \cdot \log_b a =$	$. 3 \log_a b \cdot \log_b c \cdot \log_c d = $

14.对数函数的图象与性质

$y=log_ax$	<i>a</i> >1	0 <a<1< th=""></a<1<>
图象		
定义域		
值域		
	过点,	即 <i>x</i> =时, <i>y</i> =
性质	当 x>1 时,; 当 0 <x<1 td="" 时,<=""><td>当 x>1 时,; 当 0<x<1 td="" 时,<=""></x<1></td></x<1>	当 x>1 时,; 当 0 <x<1 td="" 时,<=""></x<1>
	在(0, +∞)上是函数	在(0, +∞)上是函数

1. 函数 y=f(x)在 $x=x_0$ 处的导数

(1)定义: 称函数 y=f(x)在 $x=x_0$ 处的瞬时变化率 $\lim \frac{f(x_0+\Delta x)-f(x_0)}{\Delta x}=\lim_{x\to 0} \frac{\Delta y}{\Delta x}$ 为函数 y=f(x)在 $x=x_0$ 处的导数,记作 $f'(x_0)$ 或 $y'|_{x=x_0}$,

2. 基本初等函数的导数公式

原函数	导函数
f(x) = c(c 为常数)	$f'(x) = \underline{\hspace{1cm}}$
$f(x) = x^n (n \in \mathbf{Q}^*)$	$f'(x) = \underline{\hspace{1cm}}$
$f(x) = \sin x$	$f'(x) = \underline{\hspace{1cm}}$
$f(x) = \cos x$	f'(x)=
$f(x) = a^x (a > 0 \perp a \neq 1)$	$f'(x) = \underline{\hspace{1cm}}$
$f(x) = e^x$	$f'(x) = \underline{\hspace{1cm}}$
$f(x) = \log_a x \ (x > 0, \ a > 0 \perp a \neq 1)$	$f'(x) = \underline{\hspace{1cm}}$
$f(x) = \ln x \ (x > 0)$	$f'(x) = \underline{\hspace{1cm}}$

3.导数的运算法则

$$(1)[f(x)\pm g(x)]' =$$
______.

$$(2)[f(x)\cdot g(x)]' = \underline{\hspace{1cm}}.$$

$$(3)\left[\frac{f(x)}{g(x)}\right]' = \underline{\qquad} (g(x)\neq 0).$$

4.(1)含参数的能成立(存在型)问题的解题方法

- ① $a \ge f(x)$ 在 $x \in D$ 上能成立,则 $a \ge f(x)_{min}$;
- ② $a \le f(x)$ 在 $x \in D$ 上能成立,则 $a \le f(x)_{max}$.
- (2)含全称、存在量词不等式能成立问题
 - ①存在 $x_1 \in A$,任意 $x_2 \in B$ 使 $f(x_1) \ge g(x_2)$ 成立,则 $f(x)_{\max} \ge g(x)_{\max}$;
 - ②任意 $x_1 \in A$,存在 $x_2 \in B$,使 $f(x_1) \ge g(x_2)$ 成立,则 $f(x)_{min} \ge g(x)_{min}$.

5. 常见构造辅助函数的几种类型

(1) 出现 f(x) + xf'(x), **构造** F(x) =______

(3) 出现 f(x) + f'(x), 构造 F(x) =
(5) 对于不等式 f'(x) + g'(x) > 0, 构造函数 F(x) =
(6) 对于不等式 f'(x) - g'(x) > 0, 构造函数 F(x) =
特别地,对于不等式 $f'(x) > k$,构造函数 $F(x) =$
(7)对于不等式 f'(x)g(x) + f(x)g'(x) > 0, 构造函数 F(x) =
(8)对于不等式 f'(x)g(x) - f(x)g'(x) > 0, 构造函数 F(x) =
(9)对于不等式 xf'(x) + nf(x) > 0, 构造函数 F(x) = (10)对于不等式 f'(x) + kf(x) > 0, 构造函数 F(x) = 6. 复合函数的导数 复合函数 y=f(g(x))的导数和函数 y=f(u), u=g(x)的导数间的关系为即 y 对 x 的导数等于的导数与 7.求曲线 y=f(x)的切线方程 若已知曲线 y=f(x)过点 P(x₀, y₀), 求曲线过点 P 的切线方程. (1)当点 P(x₀, y₀)是切点时,切线方程为 (2)当点 P(x₀, y₀)不是切点时,可分以下几步完成: 第一步: 设出 第二步: 写出 第三步: 将点 P 的坐标(x₀, y₀)代入切线方程求出 第四步:
(10)对于不等式 $f'(x) + kf(x) > 0$,构造函数 $F(x) =$ 6. 复合函数的导数 复合函数 $y = f(g(x))$ 的导数和函数 $y = f(u)$, $u = g(x)$ 的导数间的关系为即 y 对 x 的导数等于的导数与 7.求曲线 $y = f(x)$ 的切线方程 若已知曲线 $y = f(x)$ 过点 $P(x_0, y_0)$,求曲线过点 P 的切线方程。 (1)当点 $P(x_0, y_0)$ 是切点时,切线方程为 (2)当点 $P(x_0, y_0)$ 不是切点时,可分以下几步完成: 第一步:设出
6. 复合函数的导数 复合函数 $y=f(g(x))$ 的导数和函数 $y=f(u)$, $u=g(x)$ 的导数间的关系为即 y $\to x$ 的导数等于的导数与
导数等于的导数与
7.求曲线 y=f(x)的切线方程 若已知曲线 y=f(x)过点 P(x ₀ , y ₀), 求曲线过点 P 的切线方程. (1)当点 P(x ₀ , y ₀)是切点时,切线方程为
若已知曲线 $y = f(x)$ 过点 $P(x_0, y_0)$,求曲线过点 P 的切线方程. (1)当点 $P(x_0, y_0)$ 是切点时,切线方程为
(1)当点 $P(x_0, y_0)$ 是切点时,切线方程为
(2)当点 $P(x_0, y_0)$ 不是切点时,可分以下几步完成: 第一步:设出
(2)当点 $P(x_0, y_0)$ 不是切点时,可分以下几步完成: 第一步:设出
第一步:设出
第三步:将点 P 的坐标 (x_0, y_0) 代入切线方程求出; 第四步:
第四步:
 8. 函数 f(x)在某个区间(a, b)内的单调性与其导数的正负关系 (1)若 f'(x)>0,则 f(x)在这个区间上是的; (2)若 f'(x)<0,则 f(x)在这个区间上是的; (3)若 f'(x)=0,则 f(x)在这个区间内是 9、 f'(x)>0 与 f(x)为增函数的关系 f'(x)>0 能推出 f(x)为增函数,但反之不一定.如函数 f(x)=x³在(-∞,+∞)上是增函数,但 f'(x)≥0,
(1)若 $f'(x)>0$,则 $f(x)$ 在这个区间上是
(2)若 $f'(x)<0$,则 $f(x)$ 在这个区间上是
(3)若 $f'(x)=0$,则 $f(x)$ 在这个区间内是 9、 $f'(x)>0$ 与 $f(x)$ 为增函数的关系 $f'(x)>0$ 能推出 $f(x)$ 为增函数,但反之不一定. 如函数 $f(x)=x^3$ 在 $(-\infty, +\infty)$ 上是增函数,但 $f'(x)\ge 0$,
9、 $f'(x)>0$ 与 $f(x)$ 为增函数的关系 $f'(x)>0$ 能推出 $f(x)$ 为增函数,但反之不一定. 如函数 $f(x)=x^3$ 在 $(-\infty, +\infty)$ 上是增函数,但 $f'(x)\ge 0$,
$f'(x) > 0$ 能推出 $f(x)$ 为增函数,但反之不一定. 如函数 $f(x) = x^3$ 在 $(-\infty, +\infty)$ 上是增函数,但 $f'(x) \ge 0$,
所以 $f'(x) > 0$ 是 $f(x)$ 为增函数的条件.
10、利用导数判断函数单调性的一般步骤
(1)求; (2)在定义域内解不等式;
(3)根据结果确定 $f(x)$ 的单调区间.

11、与单调性有关的结论

(1)可导函数 $f(x)$ 在 D 上单调递增(或递减)求参数范围问题,可转化为	(或)
问题,再参变分离,转化为求最值问题,要注意"="是否取到.	
(2)可导函数在某一区间上存在单调递增(或递减)区间,可转化为(或)在该区间
上,这样就把函数的单调性问题转化成不等式问题.	
(3)若已知 $f(x)$ 在区间 I 上的单调性,区间 I 中含有参数时,可先求出 $f(x)$ 的单调区间,	, 令 I 是其单调区
间的,从而可求出参数的取值范围.	
(4)若已知 $f(x)$ 在 $[a,b]$ 上不单调,可转化为	
12、对于可导函数 $f(x)$, $f'(x_0)=0$ 是函数 $f(x)$ 在 $x=x_0$ 处有极值的条件.	
13、若函数 $f(x)$ 在开区间 (a, b) 内只有一个极值点,则相应的极值点一定是函数	
f'(x)的	

专题 03 三角函数与三角恒等变换

知识点1 任意角与弧度制

- 1、角的概念
- (1) 任意角: ①定义: 角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形; ②分类: 角按旋转方向分为正角、负角和零角.
- (2) 象限角:以角的顶点为坐标原点,角的始边为 *x* 轴正半轴,建立平面直角坐标系.这样,角的终边(除端点外)在第几象限,就说这个角是第几象限角;如果角的终边在坐标轴上,就认为这个角不属于任何一个象限.
- (3) 所有与角 α 终边相同的角,构成的角的集合是 $S = \{\beta | \beta = k \cdot 360^{\circ} + \alpha, k \in \mathbb{Z} \}$.

2、弧度制

定义	把长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作 rad
角α的弧度数公式	$ \alpha = \frac{l}{r}$ (弧长用 l 表示)
角度与弧度的换算	$1^{\circ} = \frac{\pi}{180} \text{ rad}; 2^{\circ} = \frac{\pi}{180}$
弧长公式	弧长 $l= \alpha r$
扇形面积公式	$S = \frac{1}{2}lr = \frac{1}{2} \alpha r^2$

知识点 2 任意角的三角函数

三角函数	正弦	余弦	正切
定义	设 α 是一个任意角,它的终边与单位圆交于点 $P(x, y)$,那么		
	y叫做α的正弦,记作 sin α	x 叫做 α 的余弦,记作 $\cos \alpha$	$\frac{y}{x}$ 叫做 α 的正切,记作 $\tan \alpha$

	I	+	+	+
各象限符号	II	+	_	_
1 3(1K1) 3	III	_	_	+
	IV	_	+	_
三角函数线		$ \begin{array}{c c} & & \\$	$ \begin{array}{c c} & & \\$	$ \begin{array}{c c} & T \\ & A(1,0) \\ & A \\ $
		有向线段 MP 为正弦线	有向线段 OM 为余弦线	有向线段 AT 为正切线

知识点 3 同角三角函数基本关系式与诱导公式

- 1、平方关系: $\sin^2\alpha + \cos^2\alpha = 1$.
- 2、商数关系: $\frac{\sin \alpha}{\cos \alpha} = \tan \alpha \left(\alpha \neq \frac{\pi}{2} + k\pi, k \in \mathbb{Z} \right)$.
- 3、基本关系式的几种变形
- (1) $\sin^2\alpha = 1 \cos^2\alpha = (1 + \cos\alpha)(1 \cos\alpha); \cos^2\alpha = 1 \sin^2\alpha = (1 + \sin\alpha)(1 \sin\alpha).$
- (2) $(\sin \alpha \pm \cos \alpha)^2 = 1 \pm 2\sin \alpha \cos \alpha$.
- (3) $\sin \alpha = \tan \alpha \cos \alpha \left(\alpha \neq k\pi + \frac{\pi}{2}, k \in \mathbb{Z} \right)$.
- 4、三角函数的诱导公式

公式	_		111	四	五	六
角	$2k\pi + \alpha(k \in \mathbf{Z})$	$\pi + \alpha$	$-\alpha$	$\pi - \alpha$	$\frac{\pi}{2}$ $-\alpha$	$\frac{\pi}{2} + \alpha$
正弦	sin α	$-\sin \alpha$	$-\sin \alpha$	$\sin \alpha$	$\cos \alpha$	$\cos \alpha$
余弦	cos α	$-\cos \alpha$	cos α	$-\cos \alpha$	$\sin \alpha$	$-\sin \alpha$
正切	tan α	$\tan \alpha$	$-\tan \alpha$	$-\tan \alpha$		
口诀	K	i数名不变,符·	号看象限		函数名改变,	符号看象限

确定函数名: 奇变偶不变。 确定符号: 符号看象限(角的象限)

注意: "奇变偶不变,符号看象限"中的奇、偶是指 $\pi/2$ 的奇数倍还是偶数倍,

变与不变指函数名称的变化。

知识点 4 三角恒等变换公式

1、两角和与差的正弦、余弦、正切公式

$C_{(\alpha-eta)}$	$\cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$
$C_{(\alpha+eta)}$	$\cos(\alpha+\beta) = \cos\alpha\cos\beta - \sin\alpha\sin\beta$
$S_{(\alpha-eta)}$	$\sin(\alpha - \beta) = \sin\alpha\cos\beta - \cos\alpha\sin\beta$
$S_{(\alpha^+eta)}$	$\sin(\alpha+\beta) = \sin\alpha\cos\beta + \cos\alpha\sin\beta$
$T_{(lpha-eta)}$	$\tan(\alpha - \beta) = \frac{\tan \alpha - \tan \beta}{1 + \tan \alpha \tan \beta};$ 变形: $\tan \alpha - \tan \beta = \tan(\alpha - \beta)(1 + \tan \alpha \tan \beta)$

$T_{(lpha+eta)}$	$\tan(\alpha+\beta) = \frac{\tan\alpha + \tan\beta}{1 - \tan\alpha \tan\beta};$
	变形: $\tan \alpha + \tan \beta = \tan(\alpha + \beta)(1 - \tan \alpha \tan \beta)$

【注意】在公式 $T_{(\alpha \pm \beta)}$ 中 α , β , $\alpha \pm \beta$ 都不等于 $k\pi + \frac{\pi}{2}(k \in \mathbb{Z})$,即保证 $\tan \alpha$, $\tan \beta$, $\tan(\alpha \pm \beta)$ 都有意义.

2、二倍角公式

S_{2a}	$\sin 2\alpha = 2\sin \alpha \cos \alpha;$ 变形: $1 + \sin 2\alpha = (\sin \alpha + \cos \alpha)^2$, $1 - \sin 2\alpha = (\sin \alpha - \cos \alpha)^2$	
C_{2a}	$\cos 2\alpha = \cos^2\alpha - \sin^2\alpha = 2\cos^2\alpha - 1 = 1 - 2\sin^2\alpha;$ 变形: $\cos^2\alpha = \frac{1 + \cos 2\alpha}{2}, \sin^2\alpha = \frac{1 - \cos 2\alpha}{2}$	
T_{2a}	$\tan 2\alpha = \frac{2\tan \alpha}{1 - \tan^2 \alpha}$	

3、辅助角公式

一般地,函数 $f(\alpha) = a\sin \alpha + b\cos \alpha (a, b)$ 为常数)可以化为 $f(\alpha) = \sqrt{a^2 + b^2}\sin(\alpha + \varphi)$ 其中 $\tan \varphi = \frac{b}{a}$ 或 $f(\alpha) = \sqrt{a^2 + b^2}\cos(\alpha - \varphi)$ 其中 $\tan \varphi = \frac{a}{b}$.

专题 04 解三角形

一、正弦定理

- (1) 正弦定理
 - ①文字语言: 在一个三角形中,各边和它所对角的正弦的比相等.
 - ②符号语言: 在 $\triangle ABC$ 中, 若角A、B及C 所对边的边长分别为a, b及c,

则有
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

(2) 正弦定理的推广及常用变形公式

在 $\triangle ABC$ 中, 若角 A 、 B 及 C 所对边的边长分别为 a , b 及 c ,其外接圆半径为 R ,则

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R$$

- $(2) a \sin B = b \sin A$, $b \sin C = c \sin B$, $a \sin C = c \sin A$.
- (\mathfrak{I}) sin A: sin B: sin C = a: b: c

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = \frac{a+b+c}{\sin A + \sin B + \sin C} = \frac{a+b}{\sin A + \sin B} = \frac{a+c}{\sin A + \sin C} = \frac{b+c}{\sin B + \sin C} = 2R$$

⑤ $a = 2R \sin A$, $b = 2R \sin B$, $c = 2R \sin C$ (可实现边到角的转化)

$$\sin A = \frac{a}{2R}$$
, $\sin B = \frac{b}{2R}$, $\sin C = \frac{c}{2R}$ (可实现角到边的转化)

二、余弦定理

(1) 余弦定理

①文字语言: 三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍.

②符号语言: 在 ΔABC 中, 内角A,B,C, 所对的边分别是a,b,c则:

$$a^2 = b^2 + c^2 - 2bc \cos A$$
. $b^2 = a^2 + c^2 - 2ac \cos B$ $c^2 = a^2 + b^2 - 2ab \cos C$

$$b^2 = a^2 + c^2 - 2ac\cos B$$

$$c^2 = a^2 + b^2 - 2ab\cos C$$

(2) 余弦定理的变形

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc} \quad \cos B = \frac{a^2 + c^2 - b^2}{2ac} \quad \cos C = \frac{a^2 + b^2 - c^2}{2ab}$$

三、面积公式

三角形面积的计算公式:

$$S = \frac{1}{2}ab\sin C = \frac{1}{2}ac\sin B = \frac{1}{2}bc\sin A$$

专题 05 平面向量

一、向量的有关概念

- (1) 定义: 既有大小又有方向的量叫做向量,向量的大小叫做向量的长度(或模).
- (2) **向量的模**: 向量 \overline{AB} 的大小,也就是向量 \overline{AB} 的长度,记作 $|\overline{AB}|$.
- (3) **特殊向量**: ①**零向量**: 长度为 0 的向量,其方向是任意的。 $\vec{0}$ 与任意向量平行。
 - ②单位向量:长度等于1个单位的向量.
 - ③平行向量:方向相同或相反的非零向量.平行向量又叫共线向量.(同向或者反向)
 - ④相等向量:长度相等且方向相同的向量.(等大同向)
 - ⑤相反向量:长度相等且方向相反的向量.(等大反向)

二、向量的线性运算(向量的加法、减法和数乘运算)

(1) 向量的线性运算

运算	定义	法则(或几何意义)	运算律
加法	求两个向量和的运算	a+b b a+b a i 尾相连: 三角形法则 共起点: 平行四边形法则	①交换律 $\vec{a} + \vec{b} = \vec{b} + \vec{a}$ ②结合律 $(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c})$
减法	减一个向量等于加上它 的相反向量(转化加法)	b a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a b a a a a b a a a a a a a a a a	$\vec{a} - \vec{b} = \vec{a} + (-\vec{b})$

数乘

求实数 λ 与向量 \vec{a} 的积的运算

 $|\lambda \vec{a}| = |\lambda| |\vec{a}|$

向量的数乘: $\lambda \vec{a}$

当 $\lambda > 0$ 时, $\lambda \vec{a}$ 与 \vec{a} 的方向相同;

当 λ <0时, $\lambda \bar{a}$ 与 \bar{a} 的方向相反;

当 $\lambda = 0$ 时, $\lambda \vec{a} = 0$

 $\lambda(\mu \vec{a}) = (\lambda \mu) \vec{a}$ $(\lambda + \mu) \vec{a} = \lambda \vec{a} + \mu \vec{a}$ $\lambda(\vec{a} + \vec{b}) = \lambda \vec{a} + \lambda \vec{b}$

注: ①向量表达式中的零向量写成 $\vec{0}$, 而不能写成 0.

②两个向量共线要区别与两条直线共线,两个向量共线满足的条件是:两个向量所在直线平行或重合,而在直线中,两条直线重合与平行是两种不同的关系.

(2) 向量的三角形不等式

由向量的三角形法则,可以得到

- ①当 \vec{a} , \vec{b} 不共线时, $|\vec{a}+\vec{b}| < |\vec{a}|+|\vec{b}|$;
- ②当 \vec{a} , \vec{b} 同向且共线时, \vec{a} + \vec{b} , \vec{a} , \vec{b} 同向,则 $|\vec{a}$ + \vec{b} |= $|\vec{a}$ |+ $|\vec{b}$ |;
- ③当 \vec{a} , \vec{b} 反向且共线时,若 $|\vec{a}| > |\vec{b}|$,则 $\vec{a} + \vec{b} = |\vec{a}|$ 同向, $|\vec{a} + \vec{b}| = |\vec{a}| |\vec{b}|$;若 $|\vec{a}| < |\vec{b}|$,则 $\vec{a} + \vec{b} = |\vec{b}|$ 同向, $|\vec{a} + \vec{b}| = |\vec{b}| |\vec{a}|$.

三、向量共线定理和性质

(1) 共线向量定理

如果 $\vec{a} = \lambda \vec{b} (\lambda \in R)$,则 $\vec{a} / / \vec{b}$;反之,如果 $\vec{a} / / \vec{b}$ 且 $\vec{b} \neq \vec{0}$,则一定存在唯一的实数 λ ,使 $\vec{a} = \lambda \vec{b}$.

(2) 三点共线定理

若 A、B、C 三点共线 ⇔ 存在唯一的实数 λ ,使得 \overline{AC} = $\lambda \overline{AB}$

⇔ 存在唯一的实数 λ , 使得 $\overrightarrow{OC} = (1 - \lambda)\overrightarrow{OA} + \lambda \overrightarrow{OB}$

⇔存在实数 λ, μ ,使 $\overrightarrow{OC} = \lambda \overrightarrow{OA} + \mu \overrightarrow{OB}$,其中 $\lambda + \mu = 1$, O 为平面内任意一点.

(3) 中线向量定理

在 $\triangle ABC$ 中, 若点 D 是 边 BC 的中点,则中线向量 $\overrightarrow{AD} = \frac{1}{2}(\overrightarrow{AB} + \overrightarrow{AC})$,反之亦正确.

四、平面向量的数量积

(1) 平面向量数量积的定义

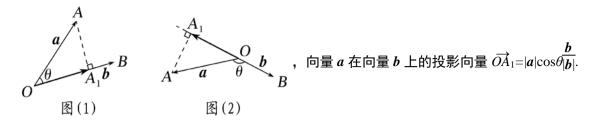
已知两个非零向量与b,我们把数量 $|a||b|\cos\theta$ 叫做a与b的数量积(或内积),记作 $a\cdot b$,即 $a\cdot b=|a||b|\cos\theta$. 规定:零向量与任一向量的数量积为 0.

(2) 投影向量

设 a, b 是两个非零向量,如图(1)(2), \overrightarrow{OA} 表示向量 a, \overrightarrow{OB} 表示向量 b,过点 A 作 \overrightarrow{OB} 所在直线的垂线,垂足为点 A_1 .

上述由向量 a 得到向量 \overrightarrow{OA} ,的变换称为向量 a 向向量 b 投影,向量 \overrightarrow{OA} ,称为向量 a 在向量 b 上的投影向量.

一分耕耘,一分收获, 未必; 九分耕耘,会有收获,一定!



(3) 数量积的运算律

已知向量 $a \cdot b \cdot c$ 和实数 λ ,则: ① $a \cdot b = b \cdot a$; ② $(\lambda a) \cdot b = \lambda (a \cdot b) = a \cdot (\lambda b)$; ③ $(a + b) \cdot c = a \cdot c + b \cdot c$.

(4) 数量积的性质

设 $a \times b$ 都是非零向量, e 是与b 方向相同的单位向量, θ 是a 与e 的夹角, 则

- ① $e \cdot a = a \cdot e = |a| \cos \theta$.
- ③当a与b同向时, $a \cdot b = |a||b|$;当a与b反向时, $a \cdot b = -|a||b|$.

特别地, $\mathbf{a} \cdot \mathbf{a} = |\mathbf{a}|^2$ 或 $|\mathbf{a}| = \sqrt{\mathbf{a} \cdot \mathbf{a}}$.

$$\textcircled{4}\cos\theta = \frac{\boldsymbol{a}\cdot\boldsymbol{b}}{|\boldsymbol{a}||\boldsymbol{b}|} (|\boldsymbol{a}||\boldsymbol{b}|\neq 0).$$

 \bigcirc $|a \cdot b| \leq |a| |b|$.

【常用结论】

两个向量 a, b 的夹角为锐角 $\Leftrightarrow a \cdot b > 0$ 且 a, b 不共线;

两个向量 a, b 的夹角为钝角 $\Leftrightarrow a \cdot b < 0$ 且 a, b 不共线

五、平面向量基本定理(力的分解)

如果 $\vec{e_1}$, $\vec{e_2}$ 是同一平面内两个不共线的向量,那么对于这个平面内任一向量 \vec{a} ,有且只有一对实数 λ_1 , λ_2 ,使 $\vec{a} = \lambda_1 \vec{e_1} + \lambda_2 \vec{e_2}$,称 $\lambda_1 \vec{e_1} + \lambda_2 \vec{e_2}$,称 $\lambda_2 \vec{e_1} + \lambda_3 \vec{e_2}$,称 $\lambda_4 \vec{e_1} + \lambda_3 \vec{e_2}$,的线性组合.

- ①其中 $\overline{e_1}$, $\overline{e_2}$ 叫做表示这一平面内所有向量的基底;
- ②平面内任一向量都可以沿两个不共线向量 $\overrightarrow{e_1}, \overrightarrow{e_2}$ 的方向分解为两个向量的和,并且这种分解是唯一的.

这说明如果 $\vec{a} = \lambda_1 \vec{e_1} + \lambda_2 \vec{e_2}$ 且 $\vec{a} = \lambda_1 \vec{e_1} + \lambda_2 \vec{e_2}$,那么 $\lambda_1 = \lambda_1', \lambda_2 = \lambda_2'$.

③当基底 $\vec{e_1}$, $\vec{e_2}$ 是两个互相垂直的单位向量时,就建立了平面直角坐标系,因此平面向量基本定理实际上是平面向量坐标表示的基础。

六、平面向量的坐标表示

(1) 正交分解

把一个向量分解为两个互相垂直的向量,叫做把向量正交分解.

(2) 平面向量的坐标表示

如图,在平面直角坐标系内,分别取与x轴、y轴方向相同的两个单位向量 \vec{i} 、 \vec{j} 作为基底,对于平面上的一个向一分耕耘,一分收获, 未必:九分耕耘,会有收获,一定!

量 \vec{a} ,由平面向量基本定理可知,有且只有一对实数x,y,使得 \vec{a} = $x\vec{i}$ + $y\vec{j}$.这样,平面内的任一向量 \vec{a} 都可由x,y 唯一确定,我们把有序数对(x,y)叫做向量 \vec{a} 的(直角)坐标,记作 \vec{a} =(x,y),x 叫做 \vec{a} 在x轴上的坐标,y 叫做 \vec{a} 在y 轴上的坐标。把 \vec{a} =(x,y) 叫做向量的坐标表示。

(3) ——对应: 向量 $\vec{a} = (x, y)$ 目 中 向量 \vec{OA} 目 中 点 A(x, y) .

七、平面向量的坐标运算

(1) 向量加、减、数乘的坐标运算

已知向量 $\vec{a} = (x_1, y_1)$, $\vec{b} = (x_2, y_2)$,则,① $\vec{a} \pm \vec{b} = (x_1 \pm x_2, y_1 \pm y_2)$.② $\lambda \vec{a} = (\lambda x_1, \lambda y_1)$.

(2) 数量积的坐标运算

已知非零向量 $\vec{a} = (x_1, y_1)$, $\vec{b} = (x_2, y_2)$, θ 为向量a、b的夹角.

结论	几何表示	坐标表示
模	$ a = \sqrt{a \cdot a}$	$ a = \sqrt{x^2 + y^2}$
数量积	$a \cdot b = a b \cos \theta$	$\boldsymbol{a} \cdot \boldsymbol{b} = x_1 x_2 + y_1 y_2$
夹角	$\cos\theta = \frac{a \cdot b}{ a b }$	$\cos \theta = \frac{x_1 x_2 + y_1 y_2}{\sqrt{x_1^2 + y_1^2} \cdot \sqrt{x_2^2 + y_2^2}}$
<i>a</i> ⊥ <i>b</i> 的充要条件	$\boldsymbol{a} \cdot \boldsymbol{b} = 0$	$x_1 x_2 + y_1 y_2 = 0$
a//b 的充要条件	$a = \lambda b (b \neq 0)$	$x_1 y_2 - x_2 y_1 = 0$
a·b 与 a b 的关系	a · b ≤ a b (当且仅当 a // b 时等号成立)	$ x_1x_2 + y_1y_2 \le \sqrt{x_1^2 + y_1^2} \cdot \sqrt{x_2^2 + y_2^2}$

(3)、设 $A(x_1, y_1)$, $B(x_2, y_2)$,则 $\overline{AB} = \overline{OB} - \overline{OA} = (x_1 - x_2, y_1 - y_2)$,即一个向量的坐标等于该向量的有向线段的终点的坐标减去始点坐标. $|\overline{AB}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$

专题 06 复数

一、复数的概念及其几何意义

复数的概念: 形如 a+bi (其中 a, $b \in R$) 的数叫作复数,

通常用 z 表示, 即 z=a+bi (a, $b\in R$), a 称为复数 z 的实部, b 称为复数 z 的虚部。

复数的分类:

注: (1) 当且仅当 b=0 时, z 为实数;

- (2) 当且仅当 a=b=0 时, z 为实数 0;
- (3)当 b≠0 时, z 为纯虚数。
 - (4) 当 b=0 时,复数为实数时可以比较大小,当 b≠0 时,复数为虚数不能比较大小。

复数相等: 若两个复数 a+bi 与 c+di(a, b, c, d∈R) 相等:

则它们的实部相等且虚部相等,即 $a+bi=c+di \Rightarrow a=c$ 且 b=d.

复数的两种几何意义:

- (1) 复数 $z = a + bi \leftrightarrow$ 复平面内的点Z(a, b)
- (2) 复数 $z = a + bi \leftrightarrow$ 平面向量 \overrightarrow{OZ}

向量 \overrightarrow{OZ} 的模称为复数 $z = a + bi(a, b \in R)$ 的模,记作|z|或|a + bi||z| = a + bi| $= \sqrt{a^2 + b^2}$.

注:两个复数一般不能比较大小,但是模可以比较大小。

复数的四则运算

复数的加法: (a+bi)+(c+di)=(a+c)+(b+d)i;

复数的减法: (a+bi)-(c+di)=(a-c)+(b-d)i;

复数的乘法: (a+bi)(c+di)= (ac-bd)+(ad+bc)i;

复数的运算律: (1) 交换律: z1 • z2=z2 • z1

结合律: (z1 • z2) • z3=z1 • (z2 • z3)

乘法对加法的分配律: $z1 \cdot (z2+z3) = z1 \cdot z2+z1 \cdot z3$

共轭复数:实部相同,虚部相反的复数互为共轭复数 例: a+bi 和 a-bi

注意: 互为共轭复数的两个复数的乘积是实数,等于这个复数(或其共轭复数)模的平方。即 z=a+bi

(a, b \in R),
$$\mathbb{R}[z \cdot \overline{z} = |z|^2 = |\overline{z}|^2 = a^2 + b^2]$$

复数的除法:

计算 $\frac{a+bi}{c+di}$ 时,通常把分子和分母同乘分母c+di的共轭复数c-di,即

$$\frac{a+bi}{c+di} = \frac{(a+bi)(c-di)}{(c+di)(c-di)} = \frac{ac+bd}{c^2+d^2} - \frac{ad-bc}{c^2+d^2}i$$

专题 07 解析几何

知识点1 直线的方程

- 1、直线的倾斜角
- (1) 定义: 当直线 l 与 x 轴相交时,取 x 轴作为基准,x 轴正向与直线 l 向上方向之间所成的角叫做直线 l 的倾斜

一分耕耘,一分收获, 未必; 九分耕耘,会有收获,一定!

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问: https://d.book118.com/40800307207 0007010