《化工设备基础及设计》课程设计 蒸馏塔与裙座的机械设计

目录

板式塔设备机械设计任务书1

- 1. 设计任务及操作条件 1
- 2. 设计内容 1
- 3. 设计要求 1
- 1、塔的设计条件及主要物性参数表 2
 - 2、塔设备设计计算程序及步骤3

按设计压力计算塔体和封头厚度 3

塔设备质量载荷计算3

自振周期计算5

地震载荷与地震弯矩计算 5

风载荷与风弯矩计算7

偏心弯矩 9

最大弯矩 9

圆筒轴向应力校核和圆筒稳定校核 10

塔设备压力试验时的应力校核 11

裙座轴向应力校核 12

基础环设计14

地脚螺栓计算 15

- 3、设计结果汇总表 16
 - 4、设计评论 17
 - 5、参考资料 18

板式塔设备机械设计任务书

1. 设计任务及操作条件:

试进行一蒸馏塔与裙座的机械设计。

已知条件为: 塔体内径 Di = 1800mm, 塔高 40m, 工作压力为 1.2MPa, 设计温度为 350℃, 介质为原油, 安装在湛江郊区, 地震强度为 7度, 塔内安装 45层 浮阀塔板, 塔体材料选用 20R, 裙座选用 Q235A。

2. 设计内容

- (1) 根据设计条件选材;
- (2) 按设计压力计算塔体和封头壁厚;
- (3) 塔设备质量载荷计算;
- (4) 风载荷与风弯矩计算;
- (5) 地震载荷与地震弯矩计算;
- (6) 偏心载荷与偏心弯矩计算;
- (7) 各种载荷引起的轴向应力;
- (8) 塔体和裙座危险截面的强度与稳定校核;
- (9) 塔体水压试验和吊装时的应力校核;
- (10) 基础环设计;
- (11) 地脚螺栓计算;
- (12) 板式塔结构设计。

3. 设计要求:

- (1) 进行塔体和裙座的机械设计计算;
- (2) 进行裙式支座校核计算;

- (3) 进行地脚螺栓座校核计算;
- (4) 绘制装备图 (2#图纸)

1、塔的设计条件及主要物性参数表

将全塔分为6段, 计算截面分别为0-0、1-1、2-2、3-3、4-4、5-5、。

表 1 设计条件及主要物性参数表

	 已知设		分段示意	·····································	
	描体内径 <i>D_i</i>		2000mm		
			40000mm		
	工作压力 p。		1.2MPa	• -	10000
	设计压力 p		1.3MPa	P ₆	
	设计温度 <i>t</i>		350°C	5	5
	材料		20R		
	许用应力	[]	133MPa	Ps	10000
塔		[ø] ^t	86MPa	4.3	
体	设计温度下弹性模量 <i>E</i>		1.73×10 ⁵ MPa	4	
	常温屈服点σς		235MPa		400
	厚度附加量 C		1.8mm		
	塔体焊接接头系数	abla arphi	1.0	P ₄	Tooot
介质密度 $ ho$		810kg/m ³			
塔盘数 ≅		45		3 1	
每块塔盘存留介质层高度 h _w		100mm	• P ₃	Z000	
	基本风压值 90)	750N/m ²	157 75	

	地震设防烈度	7度		
	场地土类别	Ⅱ类		
	偏心质量 m _e	4000kg		
	偏心矩 <i>e</i>		1800mm	
	塔外保温层厚度	100mm		
	保温材料密度 <i>p</i>	300kg/m ³		
	材料	Q235-A		
} 722	许用应力	75MPa		
裙	常温屈服点	225MPa		
座	设计温度下弹性			
	厚度附加量	1.8mm		
	人孔、平台数		7	
地	材料	Q235-A		
脚	许用应力	147MPa		
螺	腐蚀裕量(-2	3mm	
栓	个数 <i>n</i>		16	

2、塔设备设计计算程序及步骤

按设计压力计算塔体和封头厚度					
计算内容	计算公式及数据				
液注静压力 p _H /MPa	可忽略				
——————————— 计算压力 p₀/MPa	$p_c = p + p_H = p = 1.3$				

圆筒计算厚度δ/mm	$\delta = \frac{p_c D_i}{2[\sigma]^i \phi - p_c} = \frac{1.3 \times 1800}{2 \times 86 \times 1.0 - 1.3} = 13.71$							
圆筒设计厚度δ _c /mm	$\delta_n = \delta + C = 13.71 + 1.8 = 15.51$							
圆筒名义厚度δ _n /mm	$\delta_n = 20$							
圆筒有效厚度δ _e /mm	$\delta_e = \delta_n - C = 20 - 1.8 = 18.2$							
封头的计算厚度δ	$\delta_h = \frac{p_c D_i}{2[\sigma]^t \phi - 0.5 p_c} = \frac{1.3 \times 1800}{2 \times 86 \times 1.0 - 0.5 \times 1.3} = 13.66$							
_h /mm	2[0	$\int \varphi - 0.5 p_0$	2×802	(1.0 – 0.5)	(1.5			
封头设计厚度δ _{hc} /mm	$\delta_{hc} = \delta_h + C = 13.66 + 1.8 = 15.46$							
封头名义厚度δ _{hn} /mm	$\delta_{hn} = 20$							
封头有效厚度δ _{he} /mm	$\delta_{he} = \delta_{hn} - C = 20 - 1.8 = 18.2$							
塔设备质量载荷计算								
计符中容	计算公式及数据							
计算内容	0 ~ 1	1~2	2 ~ 3	3 ~ 4	4~5	5~顶		
塔段内直径 D _i /mm			18	00				
塔段名义厚度δ _{ni} /mm			2	20				
塔段长度 l _i /mm	1000	2000	7000	10000	10000	10000		
塔体高度 H ₁ /mm	40000							
筒体密度p/kg/m³	7.85×10 ³ [1]							
单位筒体质量	000							
m _{1m} /kg/m	898							
一 筒体高度 H₁/mm	36350							
筒体质量 m ₁ /kg	本质量 m_1/kg $m_1 = 898 \times 36.35 = 32642.30$							

封头质量 m ₂ /kg	$m_2 = 570.1 \times 2 = 1140.2$ [2]								
裙座高度 H₃/mm	3000								
塔设备质量载荷计算									
	计算公式及数据								
计算内容	0 ~ 1	1~2	2~3	3 ~ 4	4~5	5~顶			
裙座质量 m ₃ /kg	$m_3 = 898$	$3 \times 3 = 2694$	4						
塔体质量 m ₀₁ /kg	$m_{01}=m_1$	$+m_2+m_3$	= 32642.3	0+1140.2	+ 2694 = 3	36476			
	898	2366	6286	8980	8980	8966			
塔段内件质量 m ₀₂ /kg	$m_{02} = \frac{\pi}{4} D_i^2 \times N \times q_N = \frac{\pi}{4} \times 1.8^2 \times 45 \times 75$ = 8588 (浮阀塔盘质量 $q_N = 75kg/m^2$) [3]								
	-	-	1145	2672	2481	2290			
保温层质量 m ₀₃ /kg	$m_{03} = \frac{\pi}{4} [(D_i + 2\delta_n + 2\delta_s)^2 - (D_i + 2\delta_n)^2] H_0 \rho_2 + 2m_{03}$ $= \frac{\pi}{4} \times (2.04^2 - 1.84^2) \times 36.35 \times 300 + 2 \times (1.20 - 0.89) \times 300$ $= 6832$ m_{03} 一對头保温层质量,(kg) [4]								
	-	93	1280	1828	1828	1803			
平台、扶梯质量 m ₀₄ /kg	平台质量 $q_p = 150 \text{kg/m}^2$ 笼式扶梯质量 $q_F = 40 \text{kg/m}$ 平台数量 $n = 7$ 笼式扶梯高度 $H_F = 39 \text{m}$ $m_{03} = \frac{\pi}{4} [(D_i + 2\delta_n + 2\delta + 2B)^2 - (D_i + 2\delta_n + 2\delta)^2] \times \frac{1}{2} n q_p + q_F \times H_F$ $= \frac{\pi}{4} \times [(1.8 + 2 \times 0.02 + 2 \times 0.1 + 2 \times 0.9)^2 - (1.8 + 2 \times 0.02 + 2 \times 0.1)^2]$ $\times 0.5 \times 7 \times 150 + 40 \times 39$ $= 5924$								

z.

.

	40	80	903	1647	1647	1607		
	$m_{05} = \frac{\pi}{4} D_i^2 (h_w N + h_0) \rho_1 + V_f \rho_1$							
操作时塔内物料质量 m ₀₅ /kg	$= \frac{\pi}{4} \times 1.8^2 \times (0.1 \times 45 + 1.8) \times 810 + 0.89 \times 810$ $= 13706$							
9	-	721	4947	2886	2679	2473		
	按经验取	双质量为:						
人孔、接管、法兰等质量 ma/kg	$m_a = 0.2$	$5m_{01}=0.2$	25×36476	=9119				
	224	592	1571	2245	2245	2242		
塔设备质量载荷计算								
1. 符中容		计算公式及数据						
计算内容	0 ~ 1	1~2	2~3	3 ~ 4	4~5	5~顶		
	$m_{w} = \frac{\pi}{4} D_{i}^{2} H_{0} \rho_{w} + 2V_{f} \rho_{w}$							
充液质量 m _w /kg	$= \frac{\pi}{4} \times 1.8^2 \times 36.35 \times 1000 + 2 \times 0.89 \times 810$ $= 94280$							
	-	890	17813	25447	25447	24683		
启心 医导 ∞ /kg	再沸器: m _e = 4000							
偏心质量 m _e /kg 	-	-	4000	-	-	-		
操作质量 m ₀ /kg		176 + 8588		$m_{05} + m_a + n_{05} + n_{0$	m _e 06 + 9119 +	- 4000		
	1162 3852 20132 20258 19860 19381							
最小质量 m _{min} /kg	= 36			$m_{04} + m_a + m$	n _e 4 + 9119 + 4	1000		
	1162	3131	14269	15235	15196	15076		

z.

		-							
最大质量 m _{ma*} /kg	$m_{\text{max}} = m_{01} + m_{02} + m_{03} + m_{04} + m_w + m_a + m_e$ $= 36476 + 8588 + 6832 + 5924 + 94280 + 9119 + 4000$ $= 165219$								
	1162	4021	32998	42819	42628	41591			
自振周期计算									
计算内容			计算公司	式及数据					
塔体内直径 D _i /mm			18	300					
塔体有效厚度δ _e /mm			18	3.2					
塔设备高度 H,mm			40	000					
操作质量 m _o /kg			84	645					
	$T_1 = 90.3$	$3H\sqrt{\frac{m_0 R}{E \delta_e R}}$	$\frac{\overline{H}}{D_i^3} \times 10^{-3}$						
塔设备的自振周期 T₁/s		$= 90.33 \times 40000 \times \sqrt{\frac{84645 \times 40000}{1.73 \times 10^5 \times 20 \times 1800^3}} \times 10^{-3}$ $= 1.55$							
	地震载	战荷与地震	雲 弯矩计算	i i					
各段操作质量 m _i /kg	1162	3852	20132	20258	19860	19381			
各点距地面高度	500	2000	6500	15000	25000	35000			
	地震载	战荷与地震	。 夏弯矩计算						
			计算公	式及数据					
计算内容	0 ~ 1	1~2	2~3	3 ~ 4	4~5	5~顶			
	1.12×	8.94×	5.24×	1.84×	3.95×	6.55×			
h _i ^{1.5}	104	104	105	106	106	106			
	1.30×	3.44×	1.05×	3.73×	7.84×	1.27×			
$m_i h_i^{1.5}$	10 ⁷	108	10 ¹⁰	10 ¹⁰	1010	1011			

$A = \sum_{i=1}^{6} m_i h_i^{1.5}$	2.536×10 ¹¹							
	1.25×	8.00×	2.75×	3.38×	1.56×	4.29×		
h _i ³	108	109	10 ¹¹	10 ¹²	10 ¹³	10 ¹³		
	1.45×	3.08×	5.54×	6.85×	3.10×	8.31×		
$m_i h_i^3$	1011	10 ¹³	10 ¹⁵	10 ¹⁶	10 ¹⁷	10 ¹⁷		
$B = \sum_{i=1}^{6} m_i h_i^3$	1.215×10 ¹⁸							
A/B	2.09×10 ⁻⁷							
	$\eta_{k1} = \frac{A}{B} h_i^{1.5} = 2.09 \times 10^{-7} h_i^{1.5}$							
基本振型参与系数ηκι	0.0023	0.0187	0.11	0.385	0.826	1.37		
	4							
综合影响系数 Cz	取 C _Z = ().5 [5]						
地震影响系数最大值	α . – 0	22 [5] (3	设计烈度为	カフ座)				
α _{ma} ∗	α _{ma*} − 0.	.23 (1)	×いかり	·····································				
各类场地土的特征周期	T = 0.3	【5】(丌米	场地土、	近雲时)				
Tg	1g = 0.3	<u> </u>		<u>/</u>				
地震影响系数α1	地震影响系数 $\alpha_1 = \left(\frac{T_g}{T_1}\right)^{0.9} \bullet \alpha_{\max} = \left(\frac{0.3}{1.55}\right)^{0.9} \times 0.23 = 0.052 > 0.2\alpha_{\max}$							
	α_1 不得/	♪于0.2α _n	$=0.2\times0$	0.23 = 0.46				
			$F_{k1} = C_Z$	$\alpha_1 \eta_{k1} m_k g$				
水平地震力 Fk1/N	0.694	18.37	564.84	1989.3	4184.1	6772.3		
				0	0	5		

.

操作质量 m ₀ /kg	84645									
底截面处地震弯矩 <i>M⁰⁻⁰/</i> N·mm	$M_{E1}^{0-0} = \frac{16}{35} C_Z \alpha_1 m_0 g H$ = $\frac{16}{35} \times 0.5 \times 0.052 \times 84645 \times 9.81 \times 40000 = 3.9478 \times 10^8$									
地震载荷与地震弯矩计算										
计算内容	计算公式及数据									
底截面处地震弯矩 $M_F^{0-0}/ ext{N·mm}$	$0 \sim 1$ $1 \sim 2$ $2 \sim 3$ $3 \sim 4$ $4 \sim 5$ $5 \sim J$ 页 $M_E^{0-0} = 1.25 M_{E1}^{0-0}$ $= 1.25 \times 3.9478 \times 10^8$ $= 4.935 \times 10^8$									
截面 1 - 1处地震弯矩 <i>M_E</i> ¹⁻¹ /N·mm	$= 4.935 \times 10^{6}$ $M_{E}^{1-1} = 1.25 M_{E1}^{1-1}$ $= 1.25 \times \frac{8C_{Z}\alpha_{1}m_{0}g}{175H^{2.5}} (10H^{3.5} - 14H^{2.5} \cdot h + 4h^{3.5})$ $= 1.25 \times \frac{8 \times 0.5 \times 0.052 \times 84645 \times 9.81}{175 \times 40000^{2.5}} (10 \times 40000^{3.5})$ $= 1.25 \times \frac{40000^{2.5} \times 1000 + 4 \times 1000^{3.5}}{175 \times 40000^{2.5}} (10 \times 40000^{3.5})$ $= 4.861 \times 10^{8}$									
截面 2 - 2 处地震弯矩 $M_E^{2-2}/{ m N\cdot mm}$	$M_E^{2-2} = 1.25 M_{E1}^{2-2}$ $= 1.25 \times \frac{8C_Z \alpha_1 m_0 g}{175 H^{2.5}} (10 H^{3.5} - 14 H^{2.5} \cdot h + 4 h^{3.5})$ $= 1.25 \times \frac{8 \times 0.5 \times 0.052 \times 84645 \times 9.81}{175 \times 40000^{2.5}} (10 \times 40000^{3.5})$ $= 1.25 \times \frac{40000^{2.5} \times 3000 + 4 \times 3000^{3.5}}{175 \times 40000^{2.5}} (10 \times 40000^{3.5})$ $= 4.417 \times 10^8$									
风载荷与风弯矩计算										
计符办家	计算公式及数据									
计算内容	0~1 1~2 2~3 3~4 4~5 5~顶									
各计算段的外径	$D_{Oi} = D_i + 2\delta_n = 1800 + 2 \times 20 = 1840$									
D _{Oi} /mm										

.

300									
	100								
100									
	400								
		Į.	00						
		4	00						
1000	2000	7000	10000	10000	10000				
1000	2000	7000	10000	10000	10000				
1000	2000	7000	10000	10000	10000				
0	0	1	2	2	2				
0	0	8.1×	2×8.1×	2×8.1×	2×8.1×				
0		10 ⁵	10 ⁵	10 ⁵	10 ⁵				
风载	成荷与风弯	矩计算							
计算公式及数据									
0 ~ 1	1~2	2~3	3 ~ 4	4~5	5~顶				
$K_4 = \frac{2\sum_{i}^{3}}{2}$									
	0								
0	0	224.4	22.4	224	224				
0	0	231.4	324	324	324				
$D_{ei} = D_O$	$a_{i} + 2\delta_{si} + I$	$X_4 + d_O + 2$	$2\delta_{ps}$	1					
2540	2540	2771	2864	2864	2864				
$D_{ei} = D_O$	$_{i}+2\delta_{si}+R$	$K_3 + K_4$	1	1	'				
	0 0 $0 \sim 1$ $K_4 = \frac{2\sum_{l_1}}{l_2}$ 0 2540	1000 2000 0 0 0 0 の の の の の の の の の の の の	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	100	100 1000 1000 2000 7000 10000 10000 2000 7000 10000 10000 0 0 1 2 2 8.1× 2×8.1× 2×8.1× 0 105 105 105 风载荷与风弯矩计算 计算公式及数据 0~1 1~2 2~3 3~4 4~5 $K_4 = \frac{2\sum A}{l_0}$ 0 0 231.4 324 324 $D_{ei} = D_{0i} + 2\delta_{si} + K_4 + d_0 + 2\delta_{ps}$ 2540 2540 2540 2771 2864 2864				

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问: https://d.book118.com/41605103005
1010133