硫、二氧化硫

- 1.下列关于 SO_2 的说法正确的是()
- A.SO₂分子呈直线形,是非极性分子
- B.SO。的水溶液能导电,SO。是电解质
- C.SO₂和H₂S 反应,每生成1 mol S,转移的电子数为2 mol
- D.用石灰石浆液吸收烟气中的SO₂,可减少酸雨的形成,最终转化为石膏

解析 SO_2 是V形结构,是极性分子,A错误; SO_2 是非电解质,B错误;根据方程式 SO_2 +2 H_2S =3 $S\downarrow$ +2 H_2O 可知,每生成1 $mol\ S$ 时转移 $\frac{4}{3}$ $mol\ e$ 子,C错误;石灰石浆液吸收 SO_2 后生成 $CaSO_3$,后被空气中的 O_2 氧化为 $CaSO_4$,D正确。

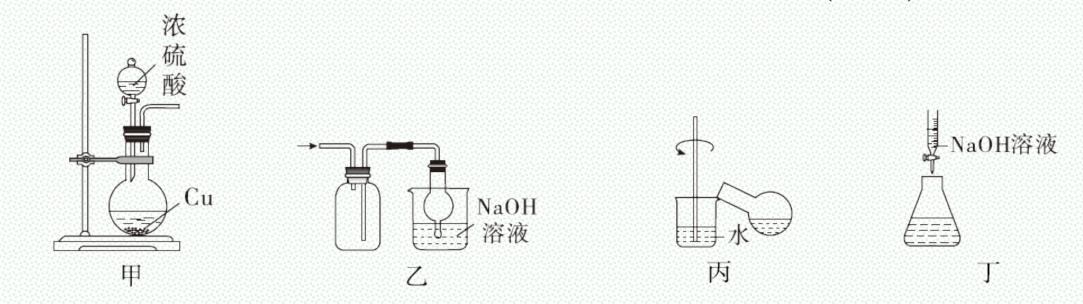
- 2.下列指定反应的离子方程式正确的是()
- A.向 NaOH 溶液中通入过量 SO₂:SO₂+2OH⁻⁻⁻⁻⁻SO₃²-+H₂O
- B.稀硫酸与铁反应:2Fe+6H+===2Fe³++3H₂↑
- C.向酸性 KMnO₄溶液中通入 SO₂:
- $3SO_2+2MnO_4^-+4H^{+}=3SO_4^{2-}+2Mn^{2+}+2H_2O$
- D.碘水中通入足量的 SO₂:I₂+SO₂+2H₂O === 2I-+SO₄²-+4H⁺

解析 NaOH 溶液中通入过量 SO_2 ,生成酸式盐 NaHSO₃,A 错误;稀硫酸与铁反应生成硫酸亚铁,B 错误;电荷不守恒,正确的离子方程式为 $5SO_2+2MnO_4^2+2H_2O=2Mn^2+4H^2+5SO_4^2$,C 错误。

- 3.SO₂是一种空气污染物,会导致硫酸型酸雨。下列选项所述措施均能减少工业排放尾气中SO₂含量的是()
- ①以其他清洁能源代替燃煤 ②对煤炭进行固硫、脱硫处理
- ③用"石灰乳+氧气"吸收含SO2的尾气 ④将含SO2的尾气向高空排放
- A.123 B.234
- C.134 D.1234

答案A

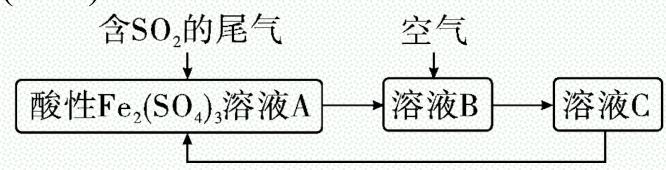
解析 以其他清洁能源代替燃煤,可减少SO₂的排放;对煤炭进行固硫、脱硫处理,使得燃烧后不再产生SO₂;用"石灰乳+氧气"吸收含SO₂的尾气时,使得SO₂的排放减少;将含SO₂的尾气向高空排放时,尾气中SO₂的含量没有明显下降。


- 4.下列有关 SO_2 的说法正确的是()
- A.SO₂在大气中不能转化为SO₃
- B.SO₂与H₂O能形成分子间氢键
- C.SO₂的水溶液放置在空气中,pH增大
- D.生产SO3时SO2表现还原性

解析 空气中的 SO_2 可在飘尘、氮的氧化物作用下被氧化成 SO_3 ,A错误; SO_2 与 H_2 O分子间不能形成氢键,B错误; SO_2 的水溶液中含有 H_2SO_3 ,在空气中放置时被 O_2 氧化生成 H_2SO_4 ,故pH减小,C错误; SO_2 被氧化时生成 SO_3 ,表现出还原性,D正确。

- 5.下列说法不正确的是()
- A.SO₂通入Ba(NO₃)₂溶液中,产生白色沉淀BaSO₄
- B.SO₂的水溶液与溴蒸气反应富集溴
- C.用酸性 $KMnO_4$ 溶液除去 CO_2 中含有的少量 SO_2
- D.SO₂与过量漂白粉浊液反应生成CaSO₃

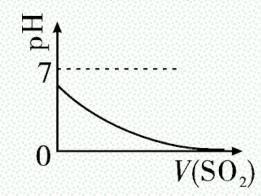
解析 SO_2 溶于水中得到中强酸 H_2SO_3 ,在溶液中被 NO_3 氧化成 SO_4^2 ,故得到的白色沉淀为 $BaSO_4$,A正确; SO_2 能与 Br_2 反应生成 H_2SO_4 和HBr,从而起到富集溴的作用,B正确; SO_2 能被酸性高锰酸钾氧化,而 CO_2 不能被氧化,C正确;由于漂白粉具有强氧化性,故 SO_2 与漂白粉浊液反应后生成 $CaSO_4$ 而不是 $CaSO_3$,D错误。


6.探究铜和浓硫酸的反应,下列装置或操作正确的是(C)

- A.用装置甲能进行铜和浓硫酸的反应
- B.装置乙可用于收集 SO_2 气体
- C.为确认甲中有CuSO₄生成,将圆底烧瓶中剩余物质倒入装置丙中稀释,观察颜色
- D.用装置丁测定余酸的浓度
- 1 2 3 4 5 6 7 8 9 10 11 12

解析 铜和浓硫酸反应需要酒精灯加热,A错误;二氧化硫的密度比空气大,因此用装置乙收集二氧化硫时,应长进短出,B错误;将圆底烧瓶中的剩余物质倒入装置丙中,若变蓝,则有硫酸铜生成,C正确;NaOH溶液不应该放在酸式滴定管中,应该放在碱式滴定管中,D错误。

7.如图所示是一种综合处理 SO_2 废气的工艺流程,若每步都完全反应。下列说法正确的是()



- A.溶液B中发生的反应为2SO₂+O₂—2SO₃
- B.可用酸性高锰酸钾溶液检验溶液C中是否含有Fe3+
- C.由以上流程可推知氧化性: $Fe^{3+}>O_2> SO_4^{2-}$
- D.此工艺的优点之一是物质能循环利用

答案 D

解析 溶液B中发生的反应是亚铁离子被氧气氧化为三价铁离子: $4Fe^{2+}+O_2+4H^+$ — $4Fe^{3+}+2H_2O_2$, A错误;酸性高锰酸钾溶液具有强氧化性, 二价铁离子能与酸性高锰酸钾溶液反应使其褪色, 三价铁离子不能, B错误; $2Fe^{3+}+2H_2O+SO_2$ — $2Fe^{2+}+SO_4^{2-}+4H^+; 4Fe^{2+}+O_2+4H^+$ — $4Fe^{3+}+2H_2O_2$, 根据氧化还原反应中氧化剂的氧化性大于氧化产物, 所以氧化性: $O_2>Fe^{3+}>$ SO_4^{3-} 错误; 流程中生成的硫酸铁溶液可以循环使用, D正确。

8.常温下,将SO₂气体逐渐通入某溶液中,溶液的pH随通入的SO₂气体体积的变化如图所示,则该溶液可能是()

A.氨水

B.氯水

- C.石灰水
- D.食盐水

答案 B

解析 由图可知,溶液起始pH小于7,随着SO₂的通入,溶液的酸性逐渐增强, 只有B选项符合要求。 以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问: https://d.book118.com/417126044114006166