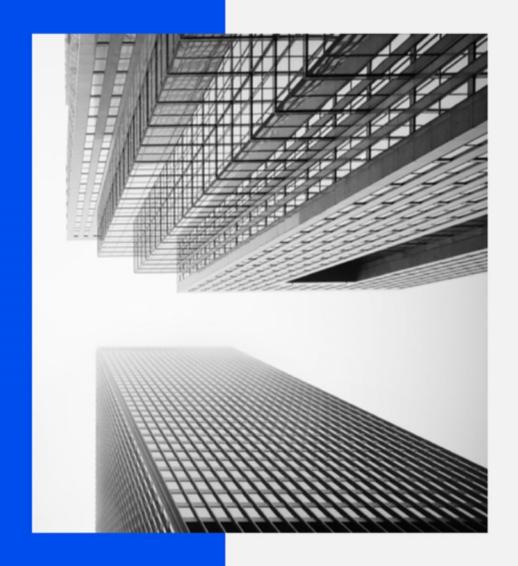


城际铁路S型曲线桥移动模架的应用与研究

汇报人:

2024-01-19

- ・引言
- ·城际铁路S型曲线桥概述
- ·移动模架在城际铁路S型曲线桥中的应用
- · 移动模架在城际铁路S型曲线桥中的优势 分析



- · 移动模架在城际铁路S型曲线桥中的实践 案例
- · 移动模架在城际铁路S型曲线桥中的研究 展望

01

引言

背景与意义

城际铁路建设需求

随着我国城市化进程的加速和区域经济发展的需要,城际铁路建设日益受到重视。 S型曲线桥作为城际铁路的重要组成部分,其施工技术和方法对于铁路建设的质量和效率具有重要影响。

移动模架技术优势

移动模架是一种先进的桥梁施工方法,具有施工效率高、质量可控、适应性强等优点。在城际铁路S型曲线桥建设中应用移动模架技术,可以提高施工效率和质量,降低建设成本,对于推动城际铁路建设和交通事业发展具有重要意义。

国外研究现状

移动模架技术在国外已经得到广泛应用,相关研究也较为深入。主要集中在移动模架的结构设计、施工技术、质量控制等方面。同时,国外学者还对移动模架在曲线桥施工中的应用进行了探索和研究,取得了一些成果。

国内研究现状

近年来,我国城际铁路建设蓬勃发展,移动模架技术也逐渐得到应用和推广。国内学者在移动模架的结构设计、施工技术、质量控制等方面进行了大量研究和实践,取得了一定成果。但是,在城际铁路S型曲线桥移动模架的应用方面,相关研究还相对较少,需要进一步深入探索和研究。

研究目的和内容

• 研究目的:本研究旨在探讨城际铁路S型曲线桥移动模架的应用技术,通过对其结构设计、施工技术、质量控制等方面的深入研究,为城际铁路S型曲线桥的移动模架施工提供理论支持和技术指导,推动城际铁路建设和交通事业的发展。

研究目的和内容

01

研究内容:本研究将从以下几个方面展开

02

1. 分析城际铁路S型曲线桥的结构特点和施工难点;

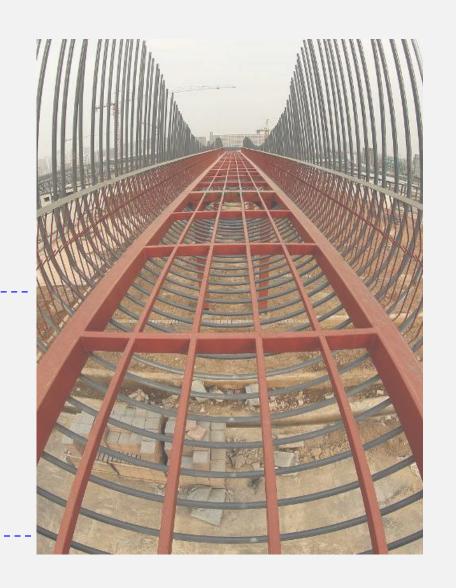
03

2. 研究移动模架在城际铁路S型曲线桥施工中的适用 性和优势;

研究目的和内容

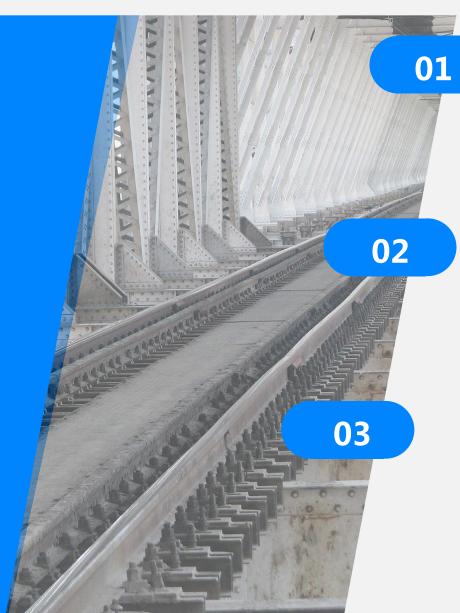
02

城际铁路S型曲线桥概 述


城际铁路S型曲线桥的定义和特点

定义

城际铁路S型曲线桥是一种特殊类型的桥梁,其主体结构在水平面上呈现S型曲线形状,以适应地形、地貌或线路设计的需要。


特点

城际铁路S型曲线桥具有独特的线形美感,能够很好地适应复杂地形条件,减少对环境的影响。同时,由于曲线形状的存在,桥梁结构受力复杂,设计和施工难度较大。

城际铁路S型曲线桥的结构形式

上部结构

城际铁路S型曲线桥的上部结构通常采用预应力混凝土简支梁或连续梁, 以适应桥梁的曲线形状和受力特点。

下部结构

下部结构包括桥墩、桥台和基础。桥墩和桥台一般采用钢筋混凝土结构,以承受上部结构传来的荷载。基础类型根据地质条件选择,如桩基础、扩大基础等。

附属设施

包括桥面系、伸缩缝、排水系统等。桥面系采用防水混凝土铺装层,伸缩缝设置在梁端,以适应温度变化引起的梁体伸缩。排水系统则负责将桥面雨水排出桥外。

城际铁路S型曲线桥的施工方法

支架现浇法

在桥位处搭设支架,安装模板,绑扎钢筋,浇筑混凝土, 达到强度后拆除模板和支架。这种方法适用于地质条件良 好、桥墩高度适中的情况。

悬臂浇筑法

从桥墩两侧对称向跨中逐段浇筑混凝土,待混凝土达到强度后张拉预应力筋。这种方法适用于大跨度连续梁桥的施工,但施工周期较长。

移动模架法

采用移动模架逐孔施工,模架可重复使用。这种方法适用 于多孔连续梁桥的施工,具有施工效率高、质量可控的优 点。

转体施工法

在桥位附近预制半圆形或弧形梁体,通过转体装置将梁体 旋转至设计位置后合龙。这种方法适用于跨越深谷、急流 等难以直接施工的场合。

03

移动模架在城际铁路S型曲线桥中的应用

移动模架的类型和特点

下承式移动模架

主要由主梁、导梁、前后支腿 及行走系统组成,结构简单, 适应性强。

上承式移动模架

主梁位于桥面之上,通过吊杆 或立柱与桥面连接,具有较大 的刚度和稳定性。

复合式移动模架

结合下承式和上承式的优点, 具有更高的适应性和施工效率。

结构灵活

可根据桥梁形状和跨度进行调 整,适应性强。

施工效率高

采用机械化施工,可大大缩短 工期。

安全性好

模架结构稳定,可有效保障施 工人员的安全。

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问: https://d.book118.com/426240153121010151