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We address the problem of managing a storable commodity portfolio, that includes physical assets and positions in spot and forward
markets. The vast amount of capital involved in the acquisition of a power nt or storage facility implies that the financing period stretches
over a period of several quarters or years. Hence, an intertemporally consistent way of optimizing the portfolio over the nning horizon is
required. We demonstrate the temporal inconsistency of static risk objectives based on final wealth and advocate the validity in our setting
of a new class of recursive risk measures introduced by Epstein and Zin [Epstein, G., Zin, S., 1989. Substitution, risk aversion, and the tem
poral behavior of consumption and asset returns: A theoretical framework. Econometrica, 57 (4) 937 969] and Wang [Wang, T., 2000. A
class of dynamic risk measures University of British Columbia]. These risk measures provide import sights on the trade offs between
date specific risks (i.e., losses occurring at a point in time) and time duration risks represented by the pair (return, risk) over a nning
horizon; in a number of situations, they dramatically improve the efficiency of static risk objectives, a hibited in numerical examples.
� 2008 Elsevier B.V. s .
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1. Introduction

We consider the situation of a retailer who is engaged in
long-term sale contracts, owns storage facilities and can
trade the commodity in illiquid spot and forward markets.
The retailer faces a portfolio optimization problem, that
translates into deciding at each time step which ty
to inject into or withdraw from her storage facilities and
trade in the spot and forward market; and a portfolio valu-

ation problem, that consists in assessing the value of the
global portfolio and each asset composing it. The optimiza-
tion and the valuation take ce in the context of two
types of risk: the volume risk that arises from the random
demand of long-term customers and is related to exoge-

nous non-traded variables such as weather, and price risk
that is linked to the volatility of the commodity price.

The stochastic programming li ture, on the one hand,
has essentially treated situations where portfolio manage-
ment is yzed through a mean variance criterion applied
to final or intermediate wealths, and fully defined at the first

decision date. In particular, the risk reassessments at inter-
mediate decision dates are not taken into account, leading
to possible conflicts across decisions taken over time.
Examples of this open-loop approach are found in Unger
(2002), where a CVaR constraint on the final wealth is
addressed through a Monte-Carlo approach, in Martinez-
de-Albeniz and Simchi-Levi (2003), where mean variance
trade-offs are considered and yield explicit solutions in a
one-period framework, and in Kleindorfer and Li (2005),
where the case of a multi-period VaR constraint on cash-
flows i amined. The li ture on decision theory, on
the other hand, has paid a deserved attention to the
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problem of dynamic choice under uncertainty. Originally, it
was the problem of dynamic consumption nning that
was yzed by economists. In a seminal paper, Epstein
and Zin (1989) introduce a set of dynamic utilities, defined
recursively in a discrete time setting, and allowing o
separa y account for the issue of temporal elasticity of
substitution, i.e., controlling consumption over time, and
risk aversion, i.e., controlling consumption across random
states of nature. In finance, dynamic risk measures were
recently introduced to account for the occurrence of a
stream of random cash-flows over time. A general require-
ment for these risk measures is their time-consistency (see
e.g., Artzner et al., 2002; Frit li and Rosazza Gianin,
2004) since multi-period risks are reevaluated as new infor-
mation becomes available (see Wang, 2000).

Our article is, to our knowledge, the third attempt after
Ch al. (2004) and Eichhorn and Romisch (2005) to use
dynamic risk objectives to manage and evaluate portfolios
composed of contracts and physical assets. Eichhorn and
Romisch (2005) use a restriction of the set of coherent
dynamic risk measures defined by Artzner et al. (2002) to
solve an electricity portfolio optimization problem but do
not raise the problem of time-consistency of optimal strat-
egies. Ch al. (2004) de heir objective function as
an additive intertemporal utility of the consumption pro-
cess of the portfolio manager. Instead, we choose the more
general, Epstein and Zin (1989), non-additive intertempo-
ral utility objective and apply it directly to the cash-flow
process. The impact of this change is significant: in our set-
ting, the initial wealth is not a state variable, the only state
variables being the inventory level and the positions in the
forward market for future delivery periods. In addition, the
retailer’s problem is posed as a cash-flow stre nage-

ment rather than a consumption nning one. Lastly, the
flexibility of the non-additive intertemporal utility allows
the portfolio manager to separa y control the distribution
of cash-flows across time periods and states of nature.1 The
contribution of this paper is to bridge the gap between
preference theory, risk management, and stochastic pro-
gramming in a framework that is intertemporally consis-
tent, computationally feasible, and that provides clear
insights on the trade-offs between time-specific risks (e.g.,
losses that occasion signific ternal transactions costs
at a point in time) and time-duration risks represented by
returns and risks over a nning horizon. More precisely,
(i) on the methodological side, we de he concept of
time-consistency of optimal strategies, show that the classi-
cally used static risk measures depending o present
value are not time-consistent and advocate the use of recur-
sive utilities and (ii) on the operational side, we provide a
tractable framework to dynamically manage physical assets
under random demand and evolution of spot and forward
commodity prices. We show in numerical examples that the

use of recursive utilities can help exhibiting a trade-off
between final and intermediate wealth risk management.
In addition, we demonstrate that strategies based on
dynamic risk measures outperform in many situations
those based on static risk measures.

The remainder of the paper is organized as follows. In
Section 2, we de he time-consistency of optimal strate-
gies and yze the issues of risk aversion and temporal
elasticity of substitution of preferences. In Section 3, we
present the portfolio management problem and establish
in our setting the fundamental Bellman equation. Section
4 presents a numerical illustration of the main findings.
Section 5 contains concluding comments.

2. A comparison of dynamic risk objectives

The objective of this section is to present two examples
of dynamic risk preferences and assess their time-consis-
tency properties, which we view as an original contribution
of the paper.

2.1. Static risk measures

In one period settings, a number of static risk measures
have been defined to express preferences of risk averse
agents. Mathematically, a (static) risk measure is a func-
tion, here denoted m, associating to a contingent claim X

a real number mðX Þ. mðX Þ represents the price that it is
acceptable to pay in order to purcha and �mð�X Þ rep-
resents the capital that must be provisioned in order to
make a short position in X acceptable. Static risk measures
were first introduced as coherent in the seminal paper by
Artzner et al. (1999) to become more generally ‘‘convex”

in Carr et al. (2001), Frit li and Rosazza Gianin (2002).

2.2. Risk measure associated to a stream of cash-flows

Defined on a filtered probability space ðX;F;P; ðFtÞÞ,
the discrete-time stochastic process G ¼ ðGiÞi 1;...;T , repre-
sents a sequence of random cash-flows occurring at times
ðhiÞi 1;...;T . G is the set of all Fhi -adapted cash-flow pro-
cesses from i ¼ 1 to i ¼ T . We choose Fh1

¼ f;;Xg as G1

is deterministic, and FhT ¼F, so that full information is
revealed at date hT .

A dynamic value measure V ¼ ðV iÞi 1;...;T consists of
map s V i : G� X! R that associate to each cash-flow
process G 2 G and x 2 X a real number V iðG;xÞ. The
resulting stochastic process ðV iÞ is Fhi -adapted. Finan-
cially, it represents the value of the sequence of cash-flows
ðGkÞk 1;...;T or the capital requirement to cover the liabilities
ð�GkÞk 1;...;T at date hi.

Let us now propose two categories of dynamic values
measures for streams of cash-flows:2

1 Note that the situation of Ch al. (2004) is obtained as a particular
case of our framework, when temporal substitution preferences are
ignored.

2 We restrict our ysis to dynamic value measures V iðGÞ depending
on present and future cash flows ðGkÞkPi as past cash flows are most of the
time considered as sunk costs or secured profits.
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1. The first category, found in Riedel (2004) and Weber
(2003) and widely used in commodity portfolio manage-
ment so far (see e.g., Unger, 2002; Kleindorfer and Li,
2005), consists of extensions of static criteria depending
on th present value of the cash-flows between date
hi and date hT :

NPVi;T ¼
XT

s i

bhs�hi Gs;

V iðG;xÞ ¼ lðNPVi;T jFhiÞ:
ð1Þ

In the above equation, the discount factor b is such that
b 6 1, and l represents a static risk measure.

2. A second category of criteria (proposed by Epstein and
Zin (1989), Wang (2000)) are recursively constructed
from of the time period by defining:

V T ðG;xÞ ¼ GT ;

V iðG;xÞ ¼ W ðGi; lðV iþ1 jFhiÞÞ 8 i 6 T � 1:
ð2Þ

In the above equation, l is a one-step certainty equiva-

lent.3 and the map W : R2 ! R called an aggrega-

tor. In this framework, the date hi value is assessed
recursively by aggregation of the current cash-flow Gi

and certainty equivalent of V iþ1 seen from date hi. An
important observation to be made at this point is that
the process ðV iÞ is Fhi -adapted.

2.3. Time-consistency

Time-consistency is a property which guarantees that
preferences implied by a dynamic value measure do not
conflict over time.

2.3.1. Examples of time-inconsistency
Consider the two cash-flow streams A and B, where all

transition probabilities are supposed to equal 0.5:

Let us evaluate stream A using the dynamic value mea-
sure (1) with lðX Þ ¼ u�1ðE½uðX Þ�Þ, uðxÞ ¼ lnðxÞ, and b ¼ 1:

V 2ðA; uÞ ¼ expðEðlnðNPVA
2;3Þ j uÞÞ

¼ expð0:5ðlnð8Þ þ lnð2ÞÞÞ ¼ 4;

V 2ðA; dÞ ¼ expðEðlnðNPVA
2;3Þ j dÞÞ ¼ 6

p

V 1ðAÞ ¼ expðEðlnðNPVA
1;3ÞÞÞ

¼ expð0:25ðlnð11Þ þ lnð5Þ þ lnð9Þ þ lnð4ÞÞÞ

¼ ð55� 36Þ
1
4:

Now evaluate stream B:

V 2ðB; uÞ ¼ expðEðlnðNPVB
2;3Þ j uÞÞ

¼ expð0:5ðlnð6Þ þ lnð3ÞÞÞ ¼ 18
p

;

V 2ðB; dÞ ¼ expðEðlnðNPVB
2;3Þ j dÞÞ ¼ 8

p

V 1ðBÞ ¼ expðEðlnðNPVB
1;3ÞÞÞ

¼ expð0:25ðlnð9Þ þ lnð6Þ þ lnð7Þ þ lnð5ÞÞÞ

¼ ð54� 35Þ
1
4:

We thus have simultaneously the following inequalities:

V 2ðA; uÞ < V 2ðB; uÞ and V 2ðA; dÞ < V 2ðB; dÞ
while V 1ðAÞ > V 1ðBÞ:

As in addition A1 ¼ B1 ¼ 3, the value measure V is not
time consistent.

Time-consistency does not hold either if l is a mean
variance instead of an expected utility criterion in Eq. (1).
To see this, consider the two following cash-flow streams
A (left) and B (right), with transition probabilities dis-

yed on top of each arc:

Let us evaluate stream A using the dynamic value mea-
sure (1) with lðX Þ ¼ EðX Þ � VarðX Þ:

V 2ðA; uÞ ¼ E NPVA
2;3 j u

� �
� Var NPVA

2;3 j u
� �

¼ 3

4
� 3

4
� 9

16

� �
¼ 9

16
;

V 2ðA; dÞ ¼ E NPVA
2;3 j d

� �
� Var NPVA

2;3 j d
� �

¼ 0;

3 We adopt Wang’s definition of the certainty equivalent, i.e., a static
measure m verifying the monotonicity property (which ensures that if a
random variable X is larger than Y almost surely, then mðX ÞP mðY Þ), and
reduced to the identity on the space of constant random variables.
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V 1ðAÞ ¼ E NPVA
1;3

� �
� Var NPVA

1;3

� �
¼ 1

2
� 3

4
� 3

8
� 9

64

� �
¼ 9

64
:

Now evaluate stream B:

V 2ðB; uÞ ¼ E NPVB
2;3 j u

� �
� Var NPVB

2;3 j u
� �

¼ 1

2
;

V 2ðB; dÞ ¼ E NPVB
2;3 j d

� �
� Var NPVB

2;3 j d
� �

¼ 0;

V 1ðBÞ ¼ E NPVB
1;3

� �
� Var NPVB

1;3

� �
¼ 1

2
� 1

2
� 1

2
� 1

4
� 1

16

� �
¼ 3

16
¼ 12

64
:

We thus have the simultaneous inequalities:

V 2ðA; uÞ > V 2ðB; uÞ and V 2ðA; dÞ
P V 2ðB; dÞ while V 1ðAÞ < V 1ðBÞ:

Let us denote HtðxÞ the set of events x0 2 X having the
same history as x up to time t4 and formally de he
time-consistency property:

Definition 2.1. The dynamic value measure V is intrinsi-
cally time consistent if
for all A;B 2 G; t 2T ¼ f1; . . . ; Tg;x 2 X,

Aðt;xÞPBðt;xÞ
8x0 2HtðxÞ; V tþ1ðA;x0ÞPV tþ1ðB;x0Þ

�
) V tðA;xÞPV tðB;xÞ;

Property 2.2. If the aggregator W is monotonic, then the

dynamic value measures of the recursive type (2) are intrinsi-

cally time-consistent.

Proof. For any t 2T;x 2 X, if Aðt;xÞP Bðt;xÞ and
V tþ1ðA;x0ÞP V tþ1ðB;x0Þ 8 x0 2HtðxÞ, then, by monoto-
nicity of certainty equivalents, lðV tþ1ðA; :Þ jFtÞðxÞP
lðV tþ1ðB; :Þ jFtÞðxÞ. In turn, by monotonicity of the
aggregator W,

V tðA;xÞ ¼ W ðAðt;xÞ; lðV tþ1ðA; :Þ jFtÞðxÞÞ
P W ðBðt;xÞ; lðV tþ1ðB; :Þ jFtÞðxÞÞ
¼ V tðB;xÞ: �

2.3.2. Time-consistency of optimal strategies and comparison
of criteria

In the previous section, we defined an intrinsic time-con-
sistency property, related to the evaluation of exogenous
streams of random cash-flows. In this section, we assume
instead that the cash-flows depend on decisions that are made

at each date hi, using the information available at this date.
A decision at date hi is the result of the optimization of a
dynamic value measure of the type described above. This

optimization not only yields the first decision at that date,
but a whole decision nning for all subsequent stages. The
question we pose in this section is the following: are these
optimal nnings consistent over time?

Let us de he problem formally: consider a cash-flow
sequence ðGiÞ16i6T , occurring at dates ðhiÞiP1, depending on
decisions ðqiÞ16i6T and a multi-dimensional random process
ðniÞ16i6T : Gi :¼ f ðqi; niÞ. The process ðniÞ is assumed to be
of the type niþ1 ¼ gðni; �iþ1Þ for some reasonably behaved
function g, and an ðFhiÞ-adapted white noise process ð�iÞ.

We introduce the state variables xi on which depend
decisions at time hi and denote AðxiÞ the set of admissible
strategies ðqkÞi6k6T at time hi. We suppose that, after deci-
sion qi is made at time hi, the state xi leads to
xiþ1 ¼ hðxi; qi; �iþ1Þ, where h is a deterministic function;
ðqiÞ is supposed to be an ðFhiÞ-adapted process.

Lastly, we consider the following optimization problem,
related to a dynamic value measure V:

J iðxiÞ ¼ Max
ðqkÞkPt2AðxiÞ

V iðGÞ: ð3Þ

We denote ðq�ik ðxiÞÞkPi the resulting ðFhk Þ-adapted optimal
strategy decided at date hi.

5 The question of consistency of
optimal strategies can be formulated in the following way:

Is q�iiþ1ðxi; �iþ1Þ equal to q�ðiþ1Þ
iþ1 ðxiþ1Þ;

where xiþ1 ¼ hðxi; q�ii ðxiÞ; �iþ1Þ?
We now turn to the time-consistency of optimal strategies
derived from the two dynamic value measures defined
above.

First, let us consider the final wealth objective defined in
Eq. (1) with lðX Þ ¼ u�1ðE½uðX Þ�Þ, i.e, V iðG;xÞ ¼
u�1ðEðuðNPVi;T Þ jFhiÞÞ:6

J iðxiÞ ¼ Max
ðqkÞkPi2AðxiÞ

V iðGÞ

¼ u�1 Max
qi

Max
ðqkÞkPiþ1

EhiðEhiþ1
ðuðNPVi;T ÞÞÞ

� �
¼ u�1 Max

qi

Ehi Max
ðqkÞkPiþ12Aðxiþ1Þ

Ehiþ1
ðuðNPVi;T ÞÞ

� �� �
:

The date hiþ1 implied problem Max
ðqkÞkPiþ1

Ehiþ1
ðuðNPVi;T ÞÞ differs

from the one derived from the dynamic value measure ðV iÞ,

i.e., Max
ðqkÞkPiþ1

V iþ1ðGÞ ¼ u�1 Max
ðqkÞkPiþ1

Ehiþ1
ðuðNPViþ1;T ÞÞ

� �
.7 As

a result, the optimal strategy decided at time hi differs from
the optimal strategy exhibited at time hiþ1.

4 Intuitively, it represents the set of all possible subsequent events after
time t branching from a given scenario x.

5 We classically suppose throughout this section that all encountered
optimization problems have a unique solution.

6 From now on, we denote EðX jFhi Þ Ehi ðX Þ.
7 The particular cases of a linear utility uðxÞ x (with arbitrary b 6 1) or

CARA utility uðxÞ e�kx (with b 1) yield time consistent optimal
strategies since in both cases: V tðGÞ Gt þ bhiþ1�hi l½V tþ1 jFt� with
lðX Þ u�1ðE½uðX Þ�Þ; therefore, a Bellman equation linking optimal
strategies at times hi and hiþ1 is derived, as will be shown in of
this section.
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In order to investigate the issue of whether time-incon-
sistency remains if we use a mean variance objective
instead of an expected utility, we consider a sequence of
three cash-flows ðG1;G2;G3Þ, depending on the process
ðnhi
Þi 1;2;3 and Fhi -measurable decisions ðqiÞi 1;2;3, and

decompose the variance of the sum of these cash-flows
(here, we suppose b ¼ 1 for simplicity):

Varh1
ðG1 þ G2 þ G3Þ

¼ Varh1
ðG2 þ G3Þ ¼ Eh1

½ðG2 þ G3Þ2� � ½Eh1
ðG2 þ G3Þ�2

¼ Eh1
½Eh2
ððG2 þ G3Þ2Þ� � ½Eh1

ðEh2
ðG2 þ G3ÞÞ�2

¼ Eh1
½Eh2
ððG2 þ G3Þ2Þ� � Eh1

ð½Eh2
ðG2 þ G3Þ�2Þ

þ Eh1
ð½Eh2
ðG2 þ G3Þ�2Þ � ½Eh1

ðEh2
ðG2 þ G3ÞÞ�2

¼ Eh1
½Varh2

ðG2 þ G3Þ� þ Varh1
ðEh2
ðG2 þ G3ÞÞ

¼ Eh1
½Varh2

ðG3Þ� þ Varh1
ðG2 þ Eh2

ðG3ÞÞ:

The last equality illuminates why total variance is time
inconsistent: the Fh1

-measurable term Varh1
ðG2þ

Eh2
ðG3ÞÞ is impacted by decisions q1, q2, and q3, in contrast

to the term G1, which depends only on decision q1. This
fact compromises the existence of any dynamic program-
ming equation of the Bellman type linking optimal strate-
gies at dates h1 and h2:

J 1ðx1Þ¼ Max
ðqkÞk 1;2;32Aðx1Þ

Eh1
ðG1þG2þG3Þ�Varh1

ðG1þG2þG3Þ
È É

¼ Max
ðqkÞk 1;2;3

G1ðq1Þ�Varh1
ðG2þEh2

ðG3ÞÞ
È

þEh1
ðEh2
ðG2þG3Þ�Varh2

ðG3ÞÞ
É

6¼Max
q1

G1ðq1Þ�Varh1
ðG2þEh2

ðG3ÞÞ
È

þEh1
Max

ðqkÞk 2;32Aðx2Þ
Eh2
ðG2þG3Þ�Varh2

ðG3Þ
� ��

:

We now turn to the dynamic value measures described in
Eq. (2).

As a first observation, let us consider the case of a linear
aggregator W ðx; yÞ ¼ xþ y. The date hi objective derived
from the value measure V i defined in Eq. (2) is then:

J iðxiÞ ¼ Max
ðqkÞkPi2AðxiÞ

V iðGÞ ¼ Max
ðqkÞkPi

GiðqiÞ þ lhi
ðV iþ1Þ

È É
¼Max

qi

GiðqiÞ þ Max
ðqkÞkPiþ12Aðxiþ1Þ

lhi
ðV iþ1Þ

� �
:

The question at this stage is to know whether the following
property holds:

Max
ðqkÞkPiþ1

lhi
ðV iþ1Þ¼? lhi

Max
ðqkÞkPiþ1

V iþ1

� �
: ð4Þ

If the permutation is valid, then the optimal strategies
will be time-consistent since the date hiþ1 implied problem
Max
ðqkÞkPiþ1

V iþ1 will coincide with the optimization problem at

stage iþ 1; otherwise, they will not.

Let us introduce the following aggregator W and
certainty equivalent l:

W ðx; yÞ ¼ /�1ð/ðxÞ þ b/ðyÞÞ;
lðX Þ ¼ u�1ðE½uðX Þ�Þ:

(
ð5Þ

where u and / are increasing functions and b a positive dis-
counting factor:8

J iðxiÞ ¼ Max
ðqkÞkPi2AðxiÞ

V iðGÞ

¼ Max
ðqkÞkPi2AðxiÞ

/�1ð/ðGiðqiÞÞ þ b/ðlhi
ðV iþ1ÞÞÞ

¼ /�1 Max
ðqkÞkPi2AðxiÞ

/ðGiðqiÞÞ þ b/ðlhi
ðV iþ1ÞÞ

È É� �
¼ /�1 Max

qi

/ðGiðqiÞÞ þ b/ð Max
ðqkÞkPiþ1

lhi
ðV iþ1ÞÞ

� �� �
:

The inversion between operators Max and l in the last
equality is permitted as

Max
ðqkÞkPiþ1

lhi
ðV iþ1Þ ¼ Max

ðqkÞkPiþ1

u�1 EhiðuðV iþ1ÞÞð Þ

¼ u�1 Ehi Max
ðqkÞkPiþ12Aðxiþ1Þ

uðV iþ1Þ
� �� �

¼ u�1 Ehi u Max
ðqkÞkPiþ12Aðxiþ1Þ

V iþ1

� �� �� �
¼ lhi

Max
ðqkÞkPiþ12Aðxiþ1Þ

V iþ1

� �
:

We can now present a general sufficient condition of time-
consistency for optimal strategies:

Property 2.3. If there exist non-decreasing functions

ðaiÞðbiÞ; ðciÞ; ðdiÞ and positive numbers ðbiÞ such that

V iðGÞ ¼ aihbiðGiðqiÞÞ þ bici½EhiðdiðV iþ1ðGÞÞÞ�i; ð6Þ
then the dynamic value measure ðV iÞ leads to time-consistent

optimal strategies.

For the recursive utilities defined in (5), Eq. (6) holds
with for all i, ai ¼ / 1; bi ¼ /; ci ¼ / � u 1; di ¼ u, and
bi ¼ b. In the classical case of expectation ization
(risk-neutrality), Eq. (6) holds with ai ¼ bi ¼ ci ¼ di ¼ Id.

2.4. Risk aversion and temporal elasticity of substitution

We have mentioned earlier that the problem of dynamic
valuation under uncertainty involves two dimensions, one
with respect to the distribution of cash-flows across states
of nature, the other over consecutive time periods. The first
dimension has an effect on the final wealth distribution while
the second one impacts the likelihood of bankruptcy or other

high transaction costs within the time period.
Dynamic value measures defined in Eq. (1) only depend

on the NPV of future cash-flows, hence assume infinite
temporal elasticity of substitution between cash-flows

8 This particular choice for the aggregator and the certainty equivalent
was first suggested by Epstein and Zin (1989) and later on extended by
Wang (2000) to incorporate ambiguity aversion.
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