某冶炼厂小电源接入系统的保护设计与优化

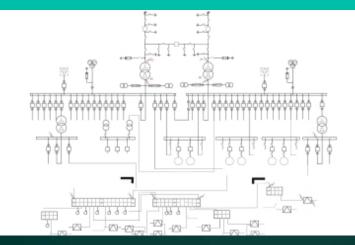
汇报人:

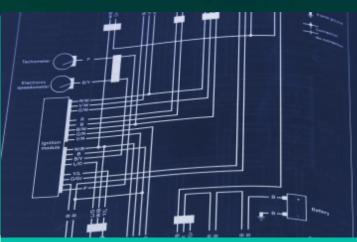
2024-01-18

contents

目录

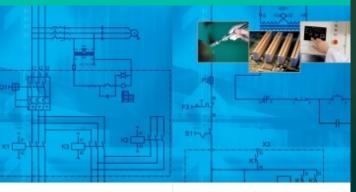
- ・引言
- ・某冶炼厂小电源接入系统现状分析
- ・保护设计原则与方法
- ・优化措施与实施方案
- ・仿真验证与实验结果分析
- ・结论与展望


01 引言



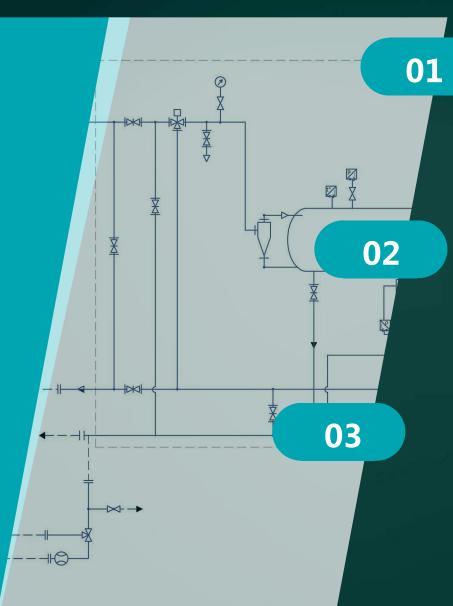
冶炼厂供电系统的重要性

冶炼厂是高能耗企业,其供电系统的稳定、可靠运行对生产安全、产品质量及经济效益至关重要。



小电源接入带来的挑战

随着新能源及分布式电源的发展,小电源接入冶炼厂供电系统日益增多,对系统保护设计提出了更高的要求。


保护设计的意义

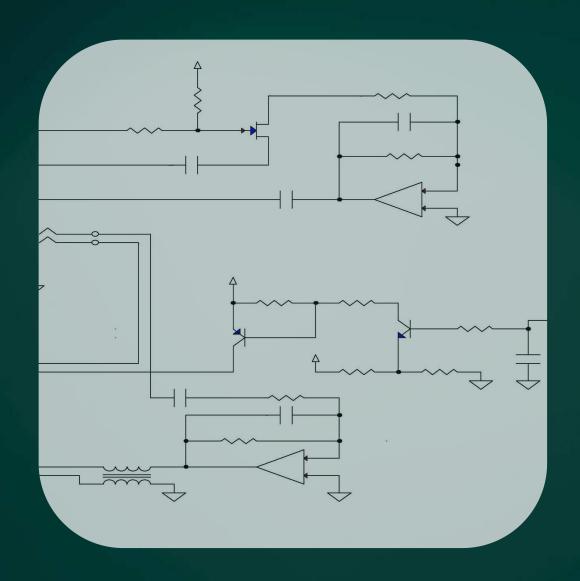
针对小电源接入带来的问题,研究合理的保护设计方案,对保障冶炼厂供电系统安全、稳定运行具有重要意义。

EDITORIAL DESIGN

国外研究现状

国外在分布式电源接入系统保护设计方面起步较早,已形成了较为完善的理论体系和技术标准,并在实际工程中得到了广泛应用。

国内研究现状


国内在这方面的研究起步较晚,但近年来发展迅速,取得了一系列重要成果。然而,在实际应用中仍存在一些问题,如保护配置不合理、定值整定不准确等。

发展趋势

随着新能源技术的不断进步和智能电网的快速发展,未来小电源接入系统保护设计将更加注重智能化、自适应和协同控制等方面的发展。

本文研究目的和内容

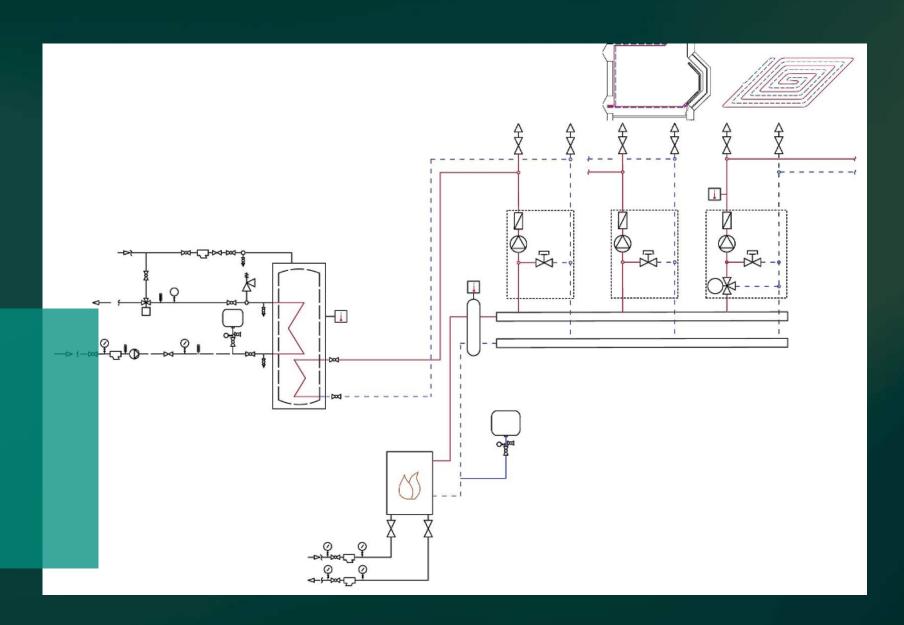
研究目的

本文旨在针对某冶炼厂小电源接入系统的实际情况,设计一套合理、有效的保护方案,提高供电系统的安全性和稳定性。

研究内容

首先分析冶炼厂供电系统的现状和小电源接入带来的问题; 其次设计针对性的保护方案,包括保护配置、定值整定和协 同控制等方面;最后通过仿真验证所提方案的有效性和可行 性。

02 某冶炼厂小电源接入系统 现状分析

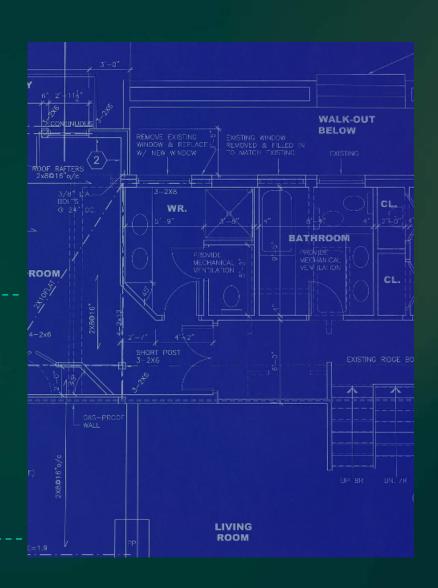

冶炼厂电力系统概述

冶炼厂电力系统规模

该冶炼厂拥有较大规模的电力系统,包括多个高压变电站和配电网络,为冶炼生产提供稳定可靠的电力供应。

冶炼厂电力负荷特点

冶炼厂电力负荷具有波动大、非线性、 不对称等特点,对电力系统的稳定性 和电能质量要求较高。


小电源接入系统现状及问题

小电源类型及数量

该冶炼厂接入了多个小电源,包括光伏、风电、柴油发电机等,数量较多且类型多样。

接入方式及存在的问题

小电源通过不同的接入方式(如并网逆变器、同步发电机等)接入系统,存在接入不规范、电能质量差、保护配置不完善等问题。

现有保护配置及存在的问题

保护配置情况

该冶炼厂电力系统配置了过流保护、 差动保护、距离保护等多种保护,以 保护电力设备的安全运行。

存在的问题

现有保护配置存在定值不合理、动作不准确、缺乏自适应能力等问题,难以满足小电源接入后的保护需求。

03 保护设计原则与方法

保护设计基本原则

选择性原则

在发生故障时,保护装置应能够准确判断 故障位置并仅切断故障部分,而非整个系 统,以减小停电范围。

灵敏性原则

保护装置应对故障电流的变化具有足够的 灵敏度,以便在故障初期就能及时动作。

安全性原则

确保在任何情况下,保护装置都不 会对人员和设备造成伤害,同时能 够可靠地切断故障电流。

速动性原则

保护装置应快速动作,尽量减小故障持续时间,以降低设备损坏程度和减小对系统的影响。

保护配置方法

01

主保护与后备保护 相结合

主保护负责快速切除故障,后备保护在主保护失效时起到补充作用。

02

近后备与远后备相 配合

近后备保护作为主保护的后备, 远后备保护作为相邻元件的后备。

03

电流保护与电压保 护相补充

电流保护主要针对相间短路故障, 电压保护主要针对接地故障和失 压情况。 以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问: https://d.book118.com/508134020143006075