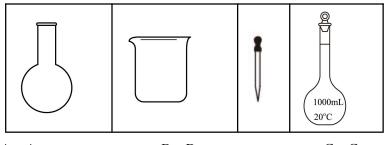

北京市昌平区 2023-2024 学年高一上学期期末联考化学试题

题号	_	Ξ	总分
评分			

一、单选题

1. 下列我国古代的技术应用中,其工作原理不涉及化学反应的是()

- 2. 当光束通过下列分散系时,能观察到丁达尔效应的是()
 - A. NaCl 溶液 B. Fe(OH)₃ 胶体 C. CuSO₄ 溶液 D. 蔗糖溶液


- 3. 下列气体中为黄绿色的是()
 - A. O_2
 - $B. H_2$
- C. Cl_2
- D. NO
- 4. 浓硫酸是实验室必备的重要试剂。下列有关浓硫酸的说法中,错误的是()
- A. 与稀硫酸性质相同

B. 具有吸水性

C. 能使蔗糖变黑

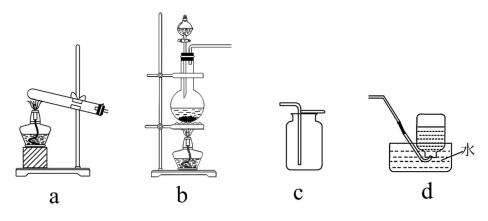
- D. 具有腐蚀性
- 5. 下列物质能与水反应生成碱并放出气体的是(
 - A. Na₂O
- B. Na_2O_2 C. $NaHCO_3$ D. Na_2CO_3
- 6. 配制 0.4mol/L 的 NaCl 溶液 1000mL 不需要用到的仪器是(

A	В	C	D

A. A

B. B

C. C


D. D

- 7. 下列物质中属于碱性氧化物的是()
 - A. SO₂
- B. KOH
- C. FeO
- D. NaCl

- 8. 常温下,下列物质中难溶于水的是()
 - A. MgSO₄
- B. Ba (OH)₂
- C. NH₄Cl
- D. CaCO₃
- 9. 下列物质分别加入水中,主要以离子形式存在的是()
 - A. BaSO₄
- B. Cu

- C. HCl
- D. Fe_2O_3

10. 关于物质的制备和收集的说法错误的是()

- A. 利用装置 a 可制备 NH₃

B. 利用装置 b 可制备 Cl₂

C. 利用装置 c 可收集 NO

- D. 利用装置 d 可收集 H₂
- 11. 下列电离方程式书写错误的是()
 - A. $NH_4NO_3 = NH_{\frac{1}{4}} + NO_{\frac{1}{3}}$

B. $KOH = K^+ + OH^-$

C. $FeCl_3=Fe^{3+}+3Cl^{-}$

- D. NaClO= Na++ ClO-
- 12. 下列反应能用 H++OH=H₂O 表示的是()
 - A. $2NaOH + CO_2 = Na_2CO_3 + H_2O$
 - B. $2NaOH+CuCl_2 = Cu(OH)_2 \downarrow + 2NaCl$
 - C. NaOH+ HCl=NaCl + H₂O
 - D. $Mg(OH)_2 + H_2SO_4 = MgSO_4 + 2H_2O$
- 13. 下列反应中不属于氧化还原反应的是()

۸

A. 2NaHCO₃ - Na₂CO₃+H₂O +CO₂↑

- B. $3Cu + 8HNO_3 = 3Cu(NO_3)_2 + 2NO \uparrow + 4H_2O$
- C. $2Na+2H_2O = 2NaOH+H_2\uparrow$
- D. Cl₂+2NaOH=NaClO+NaCl+H₂O
- 14. 下列变化需要加入氧化剂才能实现的是()
 - A. $Fe \rightarrow Fe^{2+}$

B. CO₂→CO

C. $N_2O_5 \rightarrow HNO_3$

D. NaClO₃ \rightarrow Cl₂

- 15. 下列说法中错误的是()
 - A. NaF 属于盐

B. SO₂与水反应生成 H₂SO₄

C. FeCl₃ 是常见氧化剂

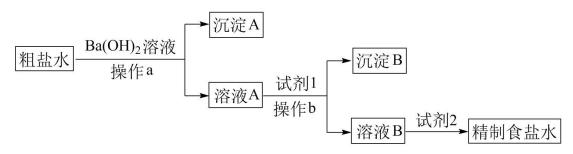
- D. KI 是常见的还原剂
- 16. 下列关于物质用途的说法错误的是()
 - A. NaHCO3用作焙制糕点

B. Na₂O₂ 用作呼吸面具供氧剂

C. NaCl 用作游泳池消毒剂

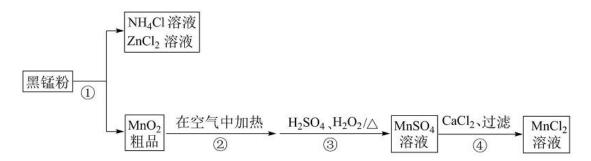
- D. Fe₂O₃ 用作红色涂料
- **17**. 依据下列实验操作及现象,可以得出 SO_3^{2-} 体现还原性这一结论的是(

序号	操作	
A	向 Na ₂ SO ₃ 溶液中加入盐酸 产生气泡	
В	向 Na ₂ SO ₃ 溶液中加入酸性高锰酸钾溶液 溶液褪色	
С	向 Na ₂ SO ₃ 溶液中加入 BaCl ₂ 溶液 产生白色沉淀	
D	向 Na ₂ SO ₃ 溶液中加入酸性 Na ₂ S 溶液	产生黄色沉淀


A. A

B. B

C. C


D. D

- 18. 下列说法中,错误的是()
 - A. Fe 的摩尔质量是 56 g·mol-1
 - B. 常温常压下, $22.4 \, L \, N_2$ 的物质的量为 1 mol
 - C. 1 mol CO₂中含有的原子总数为 3N_A
 - D. 1 L0.1 mol·L⁻¹ Na₂SO₄ 溶液中含有 0.2 mol Na⁺
- **19.** 为除去粗盐水中含有的杂质 SO $^{2-}_4$ 、Ca²⁺和 Mg²⁺,得到精制食盐水,某同学设计了如下实验流程,以下说法正确的是(

A. 沉淀 A 是 BaSO₄

- B. 溶液 A 中微粒主要有: Cl⁻、Ba²⁺、OH⁻、Na⁺、Ca²⁺
- C. 试剂 1 既可以是 Na₂CO₃ 也可以是 Na₂SO₄
- D. 加入试剂 2 的目的是除去 OH·、CO $^{2-}_3$ 、 SO $^{2-}_4$
- 20. 以废旧锌锰电池中的黑锰粉[含 MnO_2 、MnO(OH)、 NH_4Cl 、 $ZnCl_2$ 及 C 等]为原料制备 $MnCl_2$,实现锰的再利用。其工艺流程如下:

已知: 步骤②中 MnO(OH)发生了反应 4MnO(OH)+O₂= 4MnO₂+2H₂O

下列说法错误的是()

- A. 步骤①分离出 NH4Cl、ZnCl2的试剂和操作为: 水、过滤
- Δ B. 步骤②中还发生了反应: C+O₂ CO₂
- C. 步骤③中H2O2做氧化剂
- D. 步骤(4)中发生的是盐与盐之间产生沉淀的复分解反应
- 21. 用下图装置探究铜与硝酸的反应,实验记录如下:

装置	操作	现象
水	打开止水 夹,挤压胶 头,使浓硝 酸滴入试管	产生红棕 色气体,溶 液变为绿 色
浓硝酸 止水夹 铜片 (过量)	一段时间 后,关闭止 水夹,推动 注射器活塞 使部分水进 入试管	注射器内 剩余的水 被"吸入"试 管;铜表面 产生无色 气泡,溶液 变蓝,试管

	内气体逐 渐变为无 色
一段时间后,打开止水,拉对 注射 取 人 生射 器 是 我 下 在 上 拉 动 上 上 一 上 上 一 上 上 一 上 上 上 上 上 上 上 上 上 上	注射器中 无色气体 变红棕色

下列说法错误的是()

- A. ①中反应的化学方程式是 Cu+4HNO₃(浓)=Cu(NO₃)₂ +2NO₂↑ + 2H₂O
- B. ②中注射器内剩余的水被"吸入"试管的原因可能是 NO2 与 H2O 反应导致压强减小
- C. ②中铜表面产生的气体可能有 H2
- D. ③中的实验现象能证明②中反应生成了 NO

二、综合题

22. 氧化还原反应原理在研究物质性质及转化方面具有重要价值。

(1) 化合价是学习氧化还原反应的基础。在横线上写出以下几种物质中加点元素的化合价。			
Çu	Na ₂ O ₂	ClO	(NH ₄) ₂ Fe(SO ₄) ₂

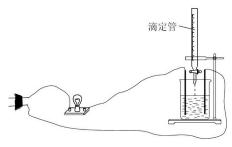
(2) 制备氯气的一种反应是 $MnO_2+4HCl(浓)$ $\frac{1}{2}MnCl_2+Cl_2\uparrow+2H_2O$ 。该反应中,还原剂是(填化学式,下

同)_____,被还原的物质是____。若反应中消耗了 1 mol MnO2,则生成 Cl2 的物质的量为_____mol。

(3) 某含余氯废水(主要成分是 NaClO) 的处理流程如下:

已知处理过程中发生反应: Na₂SO₃+NaClO= Na₂SO₄+ NaClO 的含量是 7.45×10⁻³g/L, 则处理 1000L 含余氯废水, 理论上需要 0.5 mol·L⁻¹ Na₂SO₃ 溶液______ L。

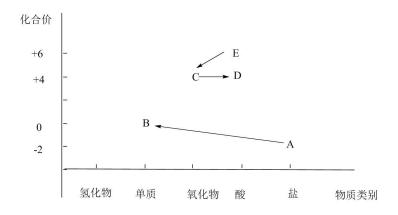
23. 某同学利用实验室中几种等浓度溶液: ①AgNO3②HCl ③Na2CO3, 进行以下实验。

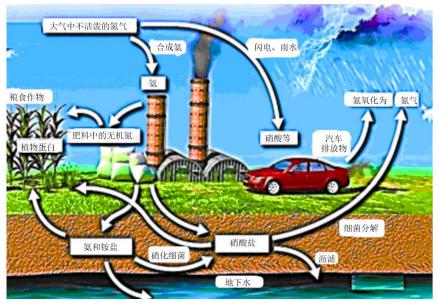

序号	操作	现象	离子方程式
i	向盛有 2 mL①的试管中加入 1 mL②	产生白色沉淀	a

ii	向盛有 2 mL②的试管(滴加酚酞)中加入 1mL③	产生气体	b
(1) 将表格补充完整。a; b			О

(2)除以上试剂外,请任意选择一种能与③反应的试剂,并写出反应的离子方程式。试

剂: _____, 离子方程式: _____。

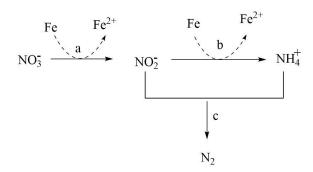

24. 如图所示, 先在小烧杯中加入 0.01 mol/L Ba(OH)₂溶液 50mL, 再滴入几滴酚酞溶液, 接通电源, 可观察到小灯泡变亮。


(2) 向小烧杯中滴加 0.2 mol/L H₂SO₄溶液,观察到以下现象,按要求填写产生对应现象的原因:

序号	现象	产生该现象的原因
1	酚酞颜色变浅直 至褪去	用化学用语表达: ①。
2	产生白色沉淀	用化学用语表达: ②。
3	小灯泡变暗直至 熄灭	文字表达: ③。
4	小灯泡又变亮	用化学用语表达: 4。

- 25. 研究不同价态硫元素之间的转化是合理利用硫元素的基本途径。
 - (1) I. 以下是硫元素形成的部分物质的价类二维图及相互转化的部分信息。

- (6) 该过程中可以循环利用的物质是____。
- 26. 下图是氮在自然界中的循环示意图(部分)。



(1)工业合成氨的化学方程式是_____。实验室用 NH₄Cl 和______ 。实验室用 NH₄Cl 和______ 反应(写化学式)也可以制备得到氨。

- (2) N₂在闪电、雨水等作用下转化为 HNO₃ 需经历多步反应,写出其中由 NO₂转化为 HNO₃ 的化学方程式_____。
 - (3) 写出由氨转化为硝酸铵的化学方程式_____。
 - (4) 处理含 NH ⁺废水的一种方法如下图所示。

NH
$$\stackrel{+}{\overset{O_2}{\longrightarrow}}$$
 NO $\stackrel{NH_4^+}{\overset{-}{\overset{-}{\longrightarrow}}}$ N₂ $\stackrel{\mathcal{N}}{\overset{-}{\overset{-}{\longrightarrow}}}$ $\stackrel{\mathcal{N}}{\overset{-}{\overset{-}{\longrightarrow}}}$ N₂

- ①该工艺中被氧化的微粒是____。
- ②在上述工艺中,若氧气浓度过高时,NO 2会被氧化成NO 3。可以通过以下工艺提高氮的脱除率。

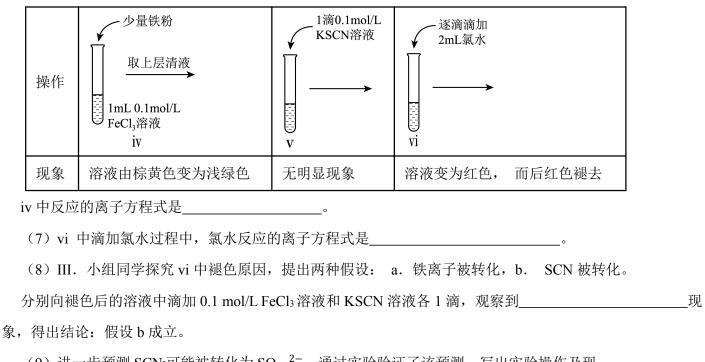
过程 b 中反应的离子方程式是______

- 27. 某小组同学分别探究 FeCl₂溶液、FeCl₃溶液的性质。
 - (1) I. 探究 FeCl₂溶液的性质。

从物质类别角度判断 FeCl₂属于______, 因此可以与某些碱反应。

- (2) 预测 FeCl₂ 具有氧化性,因此可以与 Zn 反应,此时 Zn 体现 性。
- - (4) 进行如下实验操作:

①i 中的现象是______,用化学方程式表示产生该现象的原


因: _____、___。

- ②ii 中反应的离子方程式是____。
- ③iii 中的现象是。

需要在反应后的溶液中加入试剂______,观察到现象____。

(6) II. 探究 FeCl₃溶液的性质。

小组同学进行如下实验操作并观察到对应现象:

答案解析部分

1. 【答案】C

【解析】【分析】化学反应的根本标志是有新物质的生成,出题中 A、火药使是利用了 S、C、KNO₃发生反应,B、粮食酿酒食淀粉水解生成葡萄糖,然后进一步在酒曲的作用下生成乙醇,D、铁的冶炼是利用 C 在高温下与 Fe_2O_3 反应生成 Fe 的单质,均有新物质生成,属于化学变化,而 c 项转轮排字过程不涉及化学反应。

【点评】本题以我国古代的科技应用为素材,考查化学反应的基础知识,难度不大,要求学生能灵活运用基础知识解决实际问题。

2. 【答案】B

【解析】【解答】A. NaCl 溶液不是胶体,不能产生丁达尔效应,故不选 A;

- B. Fe(OH)3 胶体, 胶体能产生丁达尔效应, 故选 B;
- C. CuSO₄溶液不是胶体,不能产生丁达尔效应,故不选C;
- D. 蔗糖溶液不是胶体,不能产生丁达尔效应,故不选 D;

故答案为: B。

【分析】丁达尔效应是胶体特有的性质。

3. 【答案】C

【解析】【解答】A. O₂是无色气体,故不选 A;

- B. H2是无色气体, 故不选 B:
- C. Cl₂是黄绿色气体, 故选 C:
- D. NO 是无色气体, 故不选 D:

故答案为: C。

【分析】氯气是常见的黄绿色气体。

4. 【答案】A

【解析】【解答】A. 浓硫酸具有酸性、吸水性、脱水性和强氧化性,稀硫酸主要体现酸性和硫酸根离子的性质,二者性质不同, A 符合题意:

- B. 浓硫酸具有吸水性, B 不符合题意:
- C. 浓硫酸能使蔗糖中 H、O 元素以 2: 1 水的形式脱去而体现脱水性,从而使蔗糖变黑, C 不符合题意;
- D. 浓硫酸具有酸性、脱水性和强氧化性,具有腐蚀性,D不符合题意;

故答案为: A。

【分析】浓硫酸具有吸水性、脱水性和强氧化性。

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问: https://d.book118.com/52704612510
3010004