
全液冷冷板系统 参考设计及验证

推荐语

OCTC开放计算标准工作委员会

液冷行业在数据中心领域的应用和发展,已经成为了数字化时代不可或缺的一部分。随着数据量的爆炸式增长,传统的风冷技术已经难以满足高密度服务器的散热需求。而液冷技术,作为一种高效、绿色的冷却方式,正逐渐成为数据中心建设的首选。本文详细介绍了液冷技术的背景、技术优化方向以及全液冷服务器系统的设计、验证和展望。通过对液冷技术的深入剖析,我们可以看到其在数据中心节能减排、提高计算力和生产力的巨大潜力。在未来,液冷技术将继续发挥重要作用,为数字经济的发展提供有力支撑。

辛公明丨山东大学能源与动力工程学院教授、党委书记

面对能耗挑战与双碳目标,液冷技术成为数据中心领域的前沿焦点。本文系统介绍了液冷技术的演进、全液冷冷板系统的设计与实践,以及铝冷板方案的具体实施与测试。内容详实,层次分明,为研究者与实践者提供了宝贵的参考资料。本文不仅梳理了液冷行业的发展背景,还深入探讨了液冷技术的优化方向。对于数据中心行业而言,液冷技术的推广应用将有助于实现节能减排,推动绿色算力的发展。希望此文能激发更多人关注液冷技术,共同为绿色低碳数据中心建设作出贡献。

陈葆立 | 英特尔数据中心与人工智能集团副总裁兼中国区总经理

数字化和绿色低碳已经成为经济与社会高质量、可持续发展的关键推动力。中国"双碳"目标的提出,更让数字化与绿色低碳相互协同,加速推动数字基础设施和算力底座优化升级,推进千行百业更快速实现碳中和转型。英特尔植根中国,携手战略合作伙伴浪潮信息积极行动,不断协同推进技术创新,践行数字化及绿色战略,助力中国加速实现"双碳"目标。本项目就是在上述背景下,由英特尔中国和浪潮信息通力合作完成。为应对IT设备功耗和功率密度的持续增加、数据中心PUE要求日益严格的挑战,本项目探索出更经济、更高效的基于冷板的全液冷解决方案的参考设计和验证方法。

目录

第一章 液冷行业背景及技术优化方向	03
1. 液冷行业背景及政策	04
2. 液冷数据中心主流技术介绍及对比	07
3. 先进冷板液冷数据中心介绍	08
4. 冷板液冷服务器设计技术优化方向	09
第二章 全液冷服务器系统架构设计	10
1. 全液冷冷板服务器创新实践	11
2. 系统组成及管路布局	12
3. 通流方式选择及流量计算	13
第三章 全液冷服务器冷板关键部件设计	16
1. CPU冷板设计	17
2. 内存液冷设计	17
3. 硬盘液冷设计	18
4. PCIe/OCP卡液冷设计	19
5. 电源冷板设计	21
第四章 全液冷服务器冷板性能测试	23
1. 测试项目介绍	24
2. 测试结果分析	25
第五章 铝冷板全液冷方案设计与测试	29
1. 铝冷板全液冷方案设计	30
2. 铝冷板性能与兼容性测试	31
3. 铝冷板测试结果及分析	32
第六章 冷板液冷未来思考展望	35
1. 全液冷冷板技术应用拓展	36
2. 冷板液冷新技术展望	37

第一章

液冷行业背景及技术 优化方向

- 1. 液冷行业背景及政策
- 2. 液冷数据中心主流技术介绍及对比
- 3. 先进冷板液冷数据中心介绍
- 4. 冷板液冷服务器设计技术优化方向

1. 液冷行业背景及政策

1.1 数据中心行业发展 及问题

国家十四五规划提出大力发展数字经济,计算力代表着生产力,而计算力的承载体就是数据 中心。根据IDC发布算力报告指出:算力提升与经济发展成正相关关系,计算力指数每提高 一个点,数字经济会增长3.5%,GDP会增长1.8%。

数据中心基础设施作为算力的载体已成为支撑数字经济的"数字底座",而其本身也是碳排 放"大户",2022年,中国数据中心碳排放量相当于5000万辆燃油汽车的年排放总量。在 双碳目标下,作为"耗电大户"数据中心的节能减排备受关注。

当前,芯片功耗与服务器功耗逐步上升。与之对应,单机柜功率密度也不断增大。根据相关 机构调研,2020年数据中心平均机架功率为8.5kW/机柜,相比于2011、2017年有明显提 高,年复合增长率达到15%。高功耗芯片,高密度服务器及单机柜密度的演进,对于传统风 冷散热来说,既容易出现局部热点,影响换热性能;又需要不断降低送风温度,增大送风风 量,影响制冷能耗。因此,传统风冷制冷模式在换热性能及能耗优化方面逐步受限。

液冷是一种新兴的冷却技术,该种技术通过采用液态冷却工质流动方式带走发热元件热量替 代风冷换热中采用空气换热的模式。与风冷对比,液冷技术可以更好地支持高功耗芯片解 热,保持芯片低温运行,延长寿命;充分利用室外自然冷源冷却,降低数据中心PUE;提高 关键部件换热效率,减少服务器散热热点,支持机柜更高密度;降低数据中心噪声,提升数 据中心环境适应性。因此,未来数据中心建设中,液冷技术的应用将会是在数据中心制冷方 向的重要组成部分,也是实现绿色算力和双碳目标达成的重要举措。

1.2 数据中心行业政策 介绍

"碳中和"成为全人类共识,已有130多个国家宣示了碳中和承诺。近年来随着数据中心规 模快速增长,其耗电量约占全球总用电量的2%,且还在急剧增加。《Uptime全球数据中心 报告2022》指出,2014年以来,全球大型数据中心PUE连续8年维持在1.6左右,数据中心能效 水平仍存在较大优化空间。为推动数据中心绿色发展,多个国家、国际组织发布相关政策。

多地已开始限制高PUE的数据中心的建设,相关政策和数据中心机房对PUE提出明确限制, 鼓励液冷技术、IT设备高密度集成技术及IT设备能效提升技术实施,促进数据中心液冷技术 讲一步发展。

1.3 液冷数据中心标准化 建设

标准化是衡量技术成熟度的重要凭证,对于液冷数据中心的标准化建设,一直以来都是行业领域、学术界与工业界关注的重点。

国内标准方面,已发布1 项与电子设备相关的冷板液冷国家标准,GB/T 15428-1995《电子设备用冷板设计导则》。该标准主要规定电子设备使用的冷板换热计算和结构设计,对于冷板核心参数定义,性能定义,材料定义,加工工艺,漏液检测定义和测试方法及要求均不涉及;同时据统计,近五年来国内有十余家标准组织或技术组织正在开展液冷技术相关的标准化工作,已发布行业标准9项,团体标准28项,涉及液冷部件,节点,系统和数据中心四个层面的技术要求和测试方法,适用于液冷系统的设计、施工、部署、运维、测试等环节的技术指导(清单详见下表);此外国内也已发布20余项白皮书或研究报告成果。

表1. 现有液冷数据中心标准

序号	标准类别	标准编号	标准名称	归口单位
1	国家标准	GB/T 15428-1995	电子设备用冷板设计导则	全国电工电子设备结构综合标准化技术委员会
2	行业标准	YD/T 4024-2022	数据中心液冷服务器系统总体技术要求和测试方法	中国通信标准化协会
3	行业标准	YD/T 3983-2021	数据中心液冷服务器系统能源使用效率技术要求和测试方法	中国通信标准化协会
4	行业标准	YD/T 3982-2021	数据中心液冷系统冷却工质体技术要求和测试方法	中国通信标准化协会
5	行业标准	YD/T 3981-2021	数据中心喷淋式液冷服务器系统技术要求和测试方法	中国通信标准化协会
6	行业标准	YD/T 3980-2021	数据中心冷板式液冷服务器系统技术要求和测试方法	中国通信标准化协会
7	行业标准	YD/T 3979-2021	数据中心浸没式液冷服务器系统技术要求和测试方法	中国通信标准化协会
8	行业标准	YD/T 4274-2023	单相浸没式液冷数据中心设计要求	中国通信标准化协会
9	行业标准	YD/T 4411-2023	浸没式液冷数据中心测试方法	中国通信标准化协会
10	团体标准	T/CESA 1249.1-2023	服务器及存储设备用液冷装置技术规范第1部分:冷板	中国电子工业标准化技术协会
11	团体标准	T/CESA 1249.2-2023	服务器及存储设备用液冷装置技术规范 第2部分:连接系统	中国电子工业标准化技术协会
12	团体标准	T/CESA 1249.3-2023	服务器及存储设备用液冷装置技术规范 第3部分:冷量分配单元	中国电子工业标准化技术协会
13	团体标准	T/CESA 1249.4-2023	服务器及存储设备用液冷装置技术规范 第4部分:液冷监控	中国电子工业标准化技术协会
14	团体标准	T/CESA 1271-2023	液冷式高性能计算机 技术参考架构	中国电子工业标准化技术协会
15	团体标准	T/CESA 1272-2023	高性能计算机 浸没式液冷系统技术要求	中国电子工业标准化技术协会
16	团体标准	T/CCSA 239.2-2020	服务器用液冷系统 第2部分:喷淋式	中国通信标准化协会

第一章 | 液冷行业背景及技术优化方向

序号	标准类别	标准编号	标准名称	归口单位
17	团体标准	T/CCSA 239.1-2018	服务器用液冷系统 第1部分:间接冷板式	中国通信标准化协会
18	团体标准	T/CIE 087—2020	单相浸没式直接液冷数据中心设计规范	中国电子学会
19	团体标准	T/CIE 091—2020	温水冷板式间接液冷数据中心设计规范	中国电子学会
20	团体标准	T/CIE 090—2020	数据中心温水冷板式间接液冷设备通用技术要求	中国电子学会
21	团体标准	T/CIE 088—2020	非水冷板式间接液冷数据中心设计规范	中国电子学会
22	团体标准	T/CIE 089—2020	喷淋式直接液冷数据中心设计规范	中国电子学会
23	团体标准	T/CIE 098—2021	液/气双通道热管冷板间接液冷数据中心设计规范	中国电子学会
24	团体标准	T/CIE 097—2021	液/气双通道热管冷板间接液冷数据中心 散热设备通用技术规范	中国电子学会
25	团体标准	T/CIE 096-2021	相变浸没式直接液冷数据中心设计规范	中国电子学会
26	团体标准	T/CIE 050-2018	液-气双通道散热数据中心机房验收标准及测试方法	中国电子学会
27	团体标准	T/CIE 051-2018	液-气双通道散热数据中心机房设计规范	中国电子学会
28	团体标准	T/ZSA 216-2023	相变浸没式直接液冷数据中心设计规范	中关村标准化协会
29	团体标准	T/SHSIC 0202-2023	数据中心浸没式液冷系统单项冷却工质技术指标和测试方法	上海市通信学会
30	团体标准	T/CA 307-2023	数据中心浸没液冷系统碳氟类冷却工质技术要求和测试规范	中国通信工业协会

在国外标准方面,ASHRAE TC9.9 定义了供给冷量分配单元的一次侧冷却水的温度等级,从W17到W+共6个温度等级,详细内容如下表所示。

表2. ASHRAE机房等级划分及参数

ASHRAE机房等级	W17	W27	W32	W40	W45	W+
一次侧供水温度	17°C	27°C	32℃	40°C	45°C	>45°C

2. 液冷数据中心主流技术介绍及对比

2.1 数据中心行业发展 及问题

冷板液冷和浸没式液冷是目前数据中心行业应用的两种主流液冷技术。冷板式液冷是指采用液体作为传热工质在高导热金属冷板内部流道流动,通过热传递对热源实现冷却的非接触式液体冷却技术。浸没式液冷是将发热电子元器件直接浸没在非导电冷却工质中,通过冷却工质循环流动来进行散热的接触式冷却技术。根据液冷工质在换热过程中是否会发生液气相转变,冷板和浸没式液冷又分成单相式和两相式。单相冷板和单相没式液冷由于技术相对简单,在教科研、互联网和通信等多行业里已经有一些典型部署案例。

相比单相浸没式液冷,单相冷板式液冷主要有以下优势:

- 技术相对成熟,生态完善,对机柜和服务器改造小,初投资少,成本优势明显。
- 不改变客户的使用习惯,运维模式、机房承重与风冷场景也基本一致。
- 冷却工质不直接接触芯片和服务器内其他部件,对材料兼容性要求低,可以相对容易地与不同厂商和型号的计算设备兼容,提供更多的硬件选择空间;对服务器高速链路信号完整性也无影响。
- 占用空间相对较少,适合于对空间有限制的数据中心和计算环境。
- 对冷却工质的需求量少,冷板液冷冷却工质相比浸没式液冷用氟化液也更加环保。
- · 单芯片散热能力在1kW以上,相比单相浸没式液冷有更高的单点散热能力。

除此之外,相比于单相浸没式液冷,单相冷板式液冷(以下均简称为冷板式液冷)的缺点主要集中在以下几个方面:

- 数据中心系统PUE更高:由于冷板式液冷服务器中冷板结构多数仅覆盖CPU、GPU等高功耗发热部件,其余部件常以风冷辅助冷却,服务器仍需配置冷板及风扇两套冷却部件,数据中心需要配置CDU和空调两套冷却系统。随着空调及压缩机制冷,通常冷板液冷数据中心PUE高于浸没式液冷系统。
- 系统存在漏液短路风险:冷板式液冷系统通常冷却工质选择去离子水或乙二醇/丙二醇水溶液,如果冷却工质与冷板材质选择和后期维护不当,长期运行后可能出现腐蚀,导致冷却工质泄露,最终对服务器造成宕机或者烧板的风险。
- 基于上述冷板式液冷的优劣势情况,鉴于冷板式液冷在整体系统架构改造,产业链成熟度,初投资等方面均有优势。如果冷板液冷能够逐步增加液冷覆盖面积,同时避免因冷却工质泄露导致的系统短路风险,冷板式液冷优势会更加明显。

3. 先进冷板液冷数据中心介绍

为了更清晰地了解先进冷板式液冷数据中心形态功能及应用情况,选取行业数据中心典型代表进行分析,详细数据如下:

3.1 先进冷板液冷数据 中心介绍

Frontier

Frontier系统安装在美国田纳西州ORNL橡树岭国家实验室,系统总共配有74个独立机柜,包括9408个CPU和37632个GPU,搭载 CPU 和 GPU的9408个刀片服务器通过全冷板液冷的方式进行冷却散热。

Aurora

Aurora系统安装在美国能源部下属阿贡国家实验室,根据规划,Aurora在建设完成后将配备 21248个CPU, 63744个GPU, 搭载 CPU 和 GPU的10624个刀片服务器通过全冷板液冷的方式 讲行冷却散热。

3.2 数据中心特点及问 题分析

Frontier和Aurora 数据中心均采用了冷板全液冷高密服务器架构,冷板全液冷顾名思义就是用冷板液冷技术实现服务器内接近100%的热捕获。冷板全液冷服务器在全球很多高算力,高供电密度的数据中心中已有很多商业部署案例,其带来的好处是

- 高效节能与静音:服务器内去风扇,数据中心去空调化运行,数据中心PUE低至1.1以下,运行噪音低于60dB。这对于大规模高密度计算集群来说是一个重要的优势,有助于进一步提高能源使用效率,把更多的电力用于提升算力。
- 高集成:采用全液冷技术,利用一套高温水系统可以实现系统换热,机房内部无需空调冷凝器设备,机房外部无需额外配置空调蒸发器,冷水机组及各项管路,全液冷服务器布置可以通过去除空调系统及相应基础设施节省30%以上的空间。
- 高密度:全液冷产品可以忽略风扇及空调的影响,使服务器的布置和机柜内排布更紧密,单机柜可支持100KW以上,无需安装冷热通道封闭设施,节省了大量的空间,从而能够在单位空间布置更多的服务器,提高数据中心运算效率。

除去以上全液冷冷板系统应用可以带来的诸多好处之外,全液冷冷板服务器系统大规模推广应 用还存在很多挑战,需要后续逐步优化去解决:

第一章 | 液冷行业背景及技术优化方向

- 随着服务器内液冷覆盖率的增高,服务器冷板液冷环路设计复杂度提升,对适合的服务器系统架构有一定要求,需要设计者在早期就针对全液冷方案规划合理的服务器架构设计,减少全液冷环路设计的复杂性。
- 随着液冷环路包含的部件增多,服务器内冷板方案的重量和体积也会有大幅提升,对液冷环路的安装和维护带来更多挑战。
- 服务器内冷板方案的成本也会随着液冷覆盖率的提高而有所提升,需要通过部件液冷方案设计优化及标准化以促进规模应用,降低成本。

4. 冷板液冷服务器设计技术优化方向

结合冷板式液冷特点及行业先进液冷数据中心分析,冷板液冷未来技术优化方向主要围绕通过技术创新进一步提高能效,降低初投资成本,减少漏液安全隐患及提高运维便利性展开。

- 完善部件液冷方案,提高液冷覆盖率。除CPU,GPU,内存之外,目前业界对服务器内其他发热部件如何通过冷板液冷实现经济有效散热的探索还比较少,方案尚未成熟,价格昂贵,有待通过设计方案的创新实现标准化,规模化应用的经济性和可靠性,进一步提高冷板液冷数据中心能效,减少数据中心空调用量和成本,降低冷却系统复杂度。
- 提高通用化及可维护性。目前已知的全冷板液冷方案大多基于高度定制化服务器设计, 液冷方案无法灵活适用于传统通用服务器架构。对硬盘和网卡等通常需要热插拔的部件 无法支持不断电维护。内存液冷方案对冷板管路加工精度要求非常高,在内存安装,维 护及可靠性方面也存在一定的弊端。
- 拓展冷板液冷材料范围,减轻重量,降低成本。服务器重量随着液冷部件的增多大幅上升,对服务器运维和运输过程中的可靠性带来诸多挑战。拓展低密度低成本冷板液冷材料范围,有助于推动行业多样化发展。
- 提升液冷系统长期使用的安全性,降低漏液风险。选取合理的冷板环路材料和液冷冷却工质,并进行充分的相容性测试及系统性能老化性测试,是保障液冷系统全生命周期内安全稳定运行,降低漏液风险的关键。

第二章 全液冷服务器 系统架构设计

- 1. 全液冷冷板服务器创新实践
- 2. 系统组成及管路布局
- 3. 通流方式选择及流量计算

1. 全液冷冷板服务器创新实践

为了进一步推动液冷技术发展和生态成熟,浪潮信息联合英特尔深耕通用高密服务器液冷优 化设计,除了业界目前广泛尝试的CPU和GPU液冷,对高功耗内存,固态硬盘,OCP网卡, PSU电源, PCIe和光模块液冷也进行了深入的探索和研究, 打造行业最高液冷覆盖率, 满足 用户多种液冷覆盖占比部署要求,为互联网、通讯等行业客户提供通用基础能力及多样化技 术支持。

此次全液冷冷板系统开发是基于浪潮信息2U四节点高密计算服务器i24,每个液冷节点支持 两颗英特尔第五代至强平台可扩展处理器,搭配16根DDR5内存,1张PCIe扩展卡和1张 OCP3.0网卡。整机可支持8张SSD固态硬盘,在实现高密算力的同时满足客户存储需求。服 务器主要的发热部件包括CPU、内存, I/O 板卡, 本地硬盘, 机箱电源等。液冷方案实现了系 统中95%左右的热量通过冷板接触热源由液体直接带走,剩余5%左右的热量经由PSU电源后 置的风液式换热器里面的冷却水带走,系统级即可实现接近100%液冷热捕获率。整体设计 理念是基于在满足性能和可靠性要求的基础上,从系统级解决方案开始,探索高能效,低成 本和易干运维的全液冷服务器全新设计之道:

- 节点与硬盘区域实现内部水电信号盲插结构共用,去除了多余管路,单节点运行即可支 持多张固态硬盘液冷。
- 节点冷板设计采用串联主流路,冷板焊接接口明显减少,降低漏液风险。
- 全新的内存液冷设计方案,颠覆了业界现有方案在散热性能,公差控制,维护便利性及 信号接触可靠性方面的弊端,为解决高功耗内存散热难题打开了新思路。
- 全新的OCP网卡和硬盘液冷方案简单可靠,均可支持30次以上热插拔,方便客户在开机 状态下进行维修,扩容或系统更新操作。
- 此全液冷冷板方案最大化地利用现有风冷模组及业界成熟的冷板和风冷散热器加工工 艺,避免定制化液冷部件和复杂加工工艺,优化成本。
- 对低密度低成本铝冷板的散热可行性及与冷却工质的长期相容性做了大量拓展研究,为 铝冷板在数据中心行业应用可行性分析积累了宝贵实践数据。

2. 系统组成及管路布局

2.1 全液冷服务器整机 介绍

2U四节点全液冷服务器系统由节点、机箱、中背板、固态硬盘模组组成。节点和机箱组件间通过快接头、电源及信号连接器实现水、电、信号盲插。

图1. 2U四节点全液冷服务器

2.2 全液冷服务器单节 点介绍

全液冷服务器的节点由节点外壳、主板、CPU芯片、内存模组、内存冷板、CPU冷板,IO冷板,电源及电源后置换热器等组成。

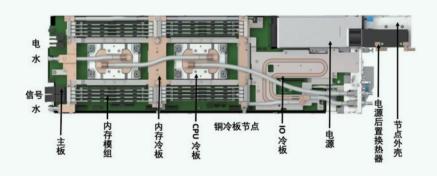


图2. 全液冷服务器节点

3. 通流方式选择及流量计算

3.1 全液冷冷板通流方式 选择

为了简化流路设计的复杂性,此全液冷服务器的散热冷却工质流路选用串联流路设计,冷却 工质整体由低功耗器件往高功耗器件流动和散热,详细流动方向见下图及表所示。



图3. 2U四节点全液冷服务器串联流路

表3. 冷却工质流动顺序

流动顺序	冷却部件			
1	CDU冷却工质经快接头1流入电源冷板			
2	经节点快接头2流入节点内 IO 冷板(PCIe,OCP3.0,PCH和IO部件)			
3	内存冷板			
4	流出节点,经快接头3流入SSD 冷板			
5	经快接头3流回节点,流入CPU 冷板,经快接头2、1流出系统返回CDU			

第二章 | 全液冷服务器系统架构设计

3.2 全液冷冷板流量 设计

全液冷服务器流量需要满足系统散热需求: 1) 为了确保二次侧管路材料的长期可靠性,二 次侧回水温度不超过65°C; 2) 确保全液冷服务器各零部件在定义的边界条件下满足散热需 求,选取铜冷板+PG25作为流量设计分析。

为了满足二次侧回水温不超过65℃要求,通过下列公式计算出单节点PG25最小流量Qmin:

Qmin=Psys/($\rho^*C^*\Delta T$) ≈ 1.3 (LPM)

其中:

Psys指单节点功耗,通过计算硬件配置以及电路损耗,单节点功耗约为1100W。

ρ指PG25在目标温度下的密度。

C指PG25在目标温度下的比热容。

 $\Delta T=14$ °C指二次侧进水温度51°C到最高回水温度65°C的温差。

为进一步验证该流量下,各个冷板覆盖部件是否超温,通过CFD软件进行散热仿真。结果显 示全液冷服务器铜冷板在进水温度51°C(W45)以及冷却工质PG25 1.3LPM流量条件下所有 零部件温度都满足温度要求,且具有一定的安全温度裕量,详细数据如下表所示:

表4. CFD散热仿真条件

序号	项目 仿真数据	
1	冷板材料	纯铜
2	冷却工质	PG25
3	进水温度	51℃ (W45)
4	环境温度	35℃
5	节点流量	1.3LPM

第二章 | 全液冷服务器系统架构设计

表5. CFD散热仿真结果

序号	部件	仿真功耗W	温度规格℃	仿真结果℃
1	CPU	350	87	63 (売温)
2	Memory	12.9	85	73
3	VRO	32	110	83
4	VR1	32	110	81
5	PCH	13	86	55
6	ВМС	5	86	61
7	CPLD	5.3	110	63
8	SSD	13.5	70	67
9	ОСР	4	105	53
10	НСА	25.7	105	91
11	QSFP	4.7	75	72

综上分析所述,全液冷服务器采用单节点流量1.3LPM完全满足系统散热设计目标,而且经济 合理利用CDU提供的冷却工质。

第三章

全液冷服务器冷板 关键部件设计

- 1. CPU冷板设计
- 2. 内存液冷设计
- 3. 硬盘液冷设计
- 4. PCIe/OCP卡液冷设计
- 5. 电源冷板设计

1. CPU冷板设计

CPU冷板模组是基于英特尔第五代至强平台可扩展处理器冷板的设计要求,综合考虑散热,结构性能,成品率,价格及不同材质冷板设计兼容性等因素优化而成的一款CPU冷板参考设计,主要由CPU冷板铝支架,CPU冷板及冷板接头等部件组成。

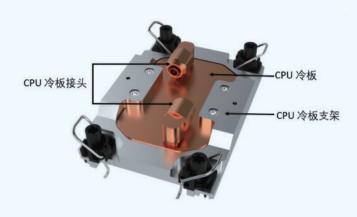


图4. CPU冷板模组

2. 内存液冷设计

内存液冷设计采用的是创新型的枕木散热器液冷方案,因内存插满如铁轨上的枕木而得名。它将传统风冷散热和冷板散热相结合,通过内置热管的散热器(或纯铝/铜板、Vapor Chamber等)把内存上的热量传递至两端,与冷板通过选定的导热垫片接触,最终通过冷板内的冷却工质把热量带走实现内存散热。

内存跟散热器可在系统外通过治具进行组装形成最小维护单元(下文称之为内存模组)。内存冷板上设计有内存模组固定结构可确保散热器和内存冷板之间良好接触,内存模组固定结构根据需要可以用螺丝固定或者无工具维护。内存冷板顶部给内存散热,底部则可以根据需要给主板其他发热元器件散热,比如VR,最大化利用内存冷板。为简化内存冷板设计,内存和主板之间可以设计转接支架来满足不同主板的限高区。

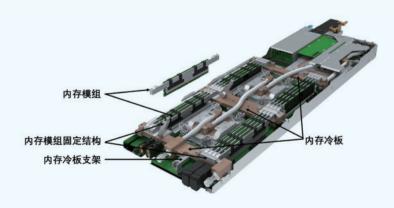


图5. 枕木散热器液冷方案

第三章 | 全液冷服务器冷板关键部件设计

与市场上现有的管路(Tubing)内存液冷方案相比,枕木散热器液冷方案的主要优势有: 易于维护。内存维护时只需像维护风冷内存一样维护内存模组,无需将散热器和扣具取下,极 大地提高了液冷内存组装效率和可靠性,降低了内存在系统内拆装时可能对内存颗粒和导热垫 片造成的损伤。

通用性好。不同内存的颗粒厚度和内存间距不影响该方案的散热性能,该方案最小适应7.5毫 米的内存间距,往上兼容。散热器和冷板解耦设计,可重复利用和内存液冷标准化。

更高的性价比。内存散热器可根据内存功耗选取不同的工艺和散热技术,且数量可根据内存按 需配置。在7.5毫米内存间距情况下,即可满足30W以上内存的散热需求。

易于制造和组装。内存插槽之间没有液冷管路,无需复杂的管路焊接和工艺控制,可以采用传 统风冷散热器和通用的CPU冷板制造工艺。组装散热器时,散热性能对散热器和主板在垂直于 内存颗粒平面方向的公差不敏感,不会出现热接触不良,更容易组装。

可靠性好。枕木液冷方案避免了组装过程中可能对内存颗粒和导热垫片造成的损伤,并可满足 多次插拔需求。此外,它还避免了内存和管路液冷散热方案安装后内存与插槽间由于倾斜而造 成信号接触不良的风险,极大地提升系统可靠性。

3. 硬盘液冷设计

创新的固态硬盘液冷方案是通过内置热管的散热器把硬盘区域的热量导出与硬盘区域外的冷 板通过导热垫片垂直接触实现换热。

此固态硬盘液冷方案主要由装有散热器的固态硬盘模组,固态硬盘冷板,硬盘模组锁紧机 构,及硬盘支架组成。硬盘模组锁紧机构固定在硬盘支架上提供合适的预紧力来保证固态硬 盘模组和固态硬盘冷板的长期接触可靠性。为了方便硬盘冷板环路在狭小空间内的安装,硬 盘支架在服务器深度方向采用了抽屉式的安装方式设计。

图6. 创新的固态硬盘液冷方案

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问: https://d.book118.com/53532223333
4011234