《CT冠脉成像医学课件》

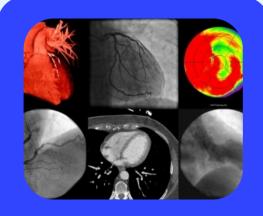
contents

目录

- · CT冠脉成像简介
- · CT冠脉成像的原理与技术
- · CT冠脉成像的临床应用
- · CT冠脉成像的影像学分析
- · CT冠脉成像的安全性与护理
- ·CT冠脉成像的未来展望

01

CT冠脉成像简介

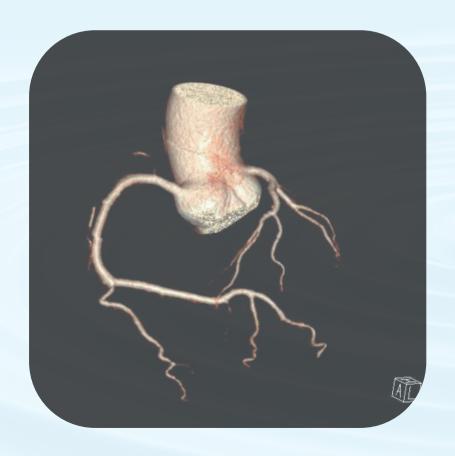


CT冠脉成像(CTCA)是一种利用多层螺旋CT(MSCT)技术无创性评价冠状动脉管腔狭窄程度和斑块特征的方法。

CTCA可以准确检测冠状动脉钙化、评估冠状动脉狭窄程度、 判断斑块性质、鉴别稳定性和非稳定性斑块,同时还能评价 冠状动脉搭桥术后或支架植入术后血管通畅情况。

CT冠脉成像的历史与发展

1990年代初开始研究CT冠脉成像技术,当时的CT分辨率较低,难以清晰显示冠状动脉管腔


2000年后,随着MSCT技术的发展,CTCA逐渐成为一种可靠的冠状动脉成像方法。

目前,随着CT技术的不断发展 , CTCA已经成为临床诊断冠心 病的重要手段之一。

CT冠脉成像的优势与局限性

优势

无创、准确性高、可重复性好、检查耗时短、可同时评估多 支血管病变等。

局限性

对钙化斑块分辨率有限、对血管重叠部分难以判断、检查费用较高以及对碘对比剂过敏患者无法进行检查等。

02

CT冠脉成像的原理与技术

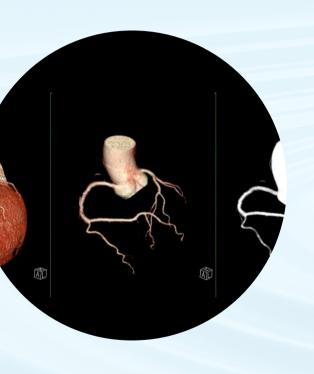
CT冠脉成像的物理原理

X线管产生X线

CT使用X线管产生X线,X线的特性是波长短、穿透性差,可以穿透人体组织,但会被骨骼等高密度组织吸收。

探测器接收X线

X线穿透人体后被探测器接收,探测器将X线转化为电信号。



计算机重建图像

电信号经过计算机处理,使用数学 算法重建出人体各部位的横断面图 像。

CT冠脉成像的技术流程

确定扫描范围

根据临床需求确定扫描范围,一般包括胸部和上腹部。

放置固定装置

使用固定装置将患者固定在检查床上,避免患者在检查过程中移动。

设置扫描参数

根据患者的体型、病情等设置扫描 参数,如管电压、管电流、扫描层 厚等。

扫描和重建

按下扫描按钮,CT机开始扫描,扫描完成后自动进行图像重建。

CT冠脉成像的扫描参数

管电压

管电压越高,X线的穿透性越强,能够更好地显示高密度组织,但也会增加辐射剂量。

管电流

管电流越大,X线的量越多,扫描时间越短,但也会增加辐射 剂量。

扫描层厚

扫描层厚越薄,图像的分辨率越高,能够更好地显示细微结构,但也会增加辐射剂量。

03

CT冠脉成像的临床应用

CT冠脉成像在冠心病诊断中的应用

冠心病诊断准确性高

CT冠脉成像能够准确检测冠状动脉狭窄程度和病变范围,对冠心病诊断的准确性较高。

有助于判断病情严重程度

CT冠脉成像可以评估冠状动脉病变的严重程度,为医生制定治疗方案提供重要参考。

检测钙化和斑块

CT冠脉成像能够检测冠状动脉钙化和斑块的性质,对预测心血管事件风险具有重要意义。

CT冠脉成像在心肌梗死诊断中的应用

要点一

快速诊断心肌梗死

CT冠脉成像可以在短时间内完成对心脏的扫描,为心肌梗死的诊断提供快速可靠的依据。

要点二

判断梗塞范围和程度

CT冠脉成像可以评估心肌梗死的范围 和程度,为医生确定治疗方案提供重 要参考。

要点三

判断再发风险

对于已经发生过心肌梗死的患者,CT 冠脉成像可以评估冠状动脉狭窄程度 和病变范围,预测再发心血管事件的 风险。

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问:

https://d.book118.com/547152141133006123