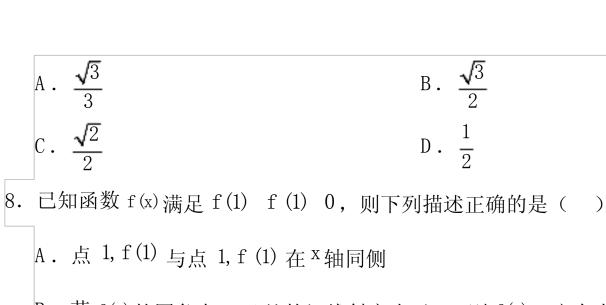
云南省昆明市第三中学 2023-2024 学年高二上学期 1 月期末

考试数学试卷

一、单选题

- 1. 抛物线 y $\frac{1}{4}$ x₂ 的准线方程为 ()
- A. $x = \frac{1}{16}$ B. x = 1 C. y = 1 D. y = 2


- 2. 设 S_n 为等差数列 $\{a_n\}$ 的前 n 项和,若 $a_n=6$, $S_{21}=0$,则 a_1 的值为()
- B. 20 C. 22
- D. 24

- 3. 下列求导运算错误的是()
 - A. $x_2 \ln x$ 2x $\ln x$ B. $\frac{x}{e_x}$ $\frac{1}{e_x}$
- - C. $x_2 \ 3_x \ 2x \ 3_x 1g3$ D. $\cos 2x \ \frac{\pi}{6}$ $2\sin 2x \ \frac{\pi}{6}$
- 4. 已知数列 a_n 是等差数列,数列 b_n 是等比数列, a_7 a_9 $\frac{4}{3}$,且 b_2 b_1 b_2 b_3 b_4 b_5 b_6 b_7 b_8 b_8 b_8
- A. $\frac{1}{4}$ B. $\frac{2}{3}$ C. $\frac{1}{2}$ D. $\frac{1}{3}$

- 5. 若点 P x, y 是圆 C : x2 y2 8x 6y 16 0 上一点,则 X2 Y2 的最小值为 ()
 - A. 2
- B. 4 C. 6
- D. 8
- 6. 已知数列 a_n 满足 a_{n-1} $\frac{1}{1 a}$, a_n 1 , 则 a_{100} ()

- 7. 如图,一束平行光线与地平面的夹角为60,一直径为24cm的篮球在这束光线的照 射下,在地平面上形成的影子轮廓为椭圆,则此椭圆的离心率为()

- B. 若 f(x) 的图象在 x 1处的切线斜率小于 0,则 f(x) 一定存在点在 x 轴下方
- C. y f(x) 与 y f(x) 的图象可能与 x 轴交于同一点
- D. 函数 F(x) f(x) f(x) 不一定存在零点

二、多选题

- 9. 已知 F₁ 4, 0 、 F₂ 4, 0 , 下列说法中正确的是 ()
 - A. 平面内到 F_1 、 F_2 两点的距离相等的点的轨迹是直线
 - B. 平面内到 F_1 、 F_2 两点的距离之差等于6的点的轨迹是双曲线的一支
 - C. 平面内到 F_1 、 F_2 两点的距离之和等于8的点的轨迹是椭圆
 - D. 平面内到 F_1 、 F_2 两点距离的平方和为12的点的轨迹是圆
- 10. 已知数列 a_n 的前 n 项和为 $^{S}_n$,下列说法正确的是()
 - A. 若S_n 2n₂ 6n 1,则a_n 4n 4
 - B. 若a 4n 25 ,则S 的最小值为 66
 - C. 若a_n 4n 3 , 则数列 1 n a_n 的前17 项和为 33
 - D. 若数列 a_n 为等差数列,且 a₁₀₁₁ a₁₀₁₂ 0,a₁₀₀₀ a₁₀₂₄ 0,则当 S_n 0时, n的最大值为 2023
- 11. 下列函数在定义域上为增函数的有()
 - A. $f x e_x x$

 $B. f x xe_x$

C. f x x sinx

- D. $f \times x \times 2 = 1 \text{ mx}$
- 12. 已知 F_1 , F_2 分别为椭圆C: $\frac{X^2}{4}$ $\frac{y^2}{3}$ 1的左,右焦点,A 为 C 的上顶点,过 F_1 且垂直于 AF_2 的直线与 C 交于 D, E 两点,则()
 - A. 椭圆 C 的焦距为 2
- B. $|DE| = \frac{48}{13}$

三、填空题

13. 记 S_n 为等比数列 a_n 的前n项和,若 a_3 a_1 3, a_4 a_2 6, 则 S_5 ______.

14. 已知双曲线 $\frac{X^2}{m-2}$ $\frac{y^2}{4-m}$ 1的焦点在 y 轴上,则离心率 e 的范围为______.

15. 数学家杨辉在其专著《详解九章算术法》和《算法通变本末》中,提出了一些新的高阶等差数列. 其中二阶等差数列是一个常见的高阶等差数列,如数列2,4,7,11,

16 从第二项起,每一项与前一项的差组成的新数列 2,3,4,5 是等差数列,则称数列

2, 4, 7, 11, 16 为二阶等差数列. 现有二阶等差数列 a , 其前六项分别为 1, 3, 6,

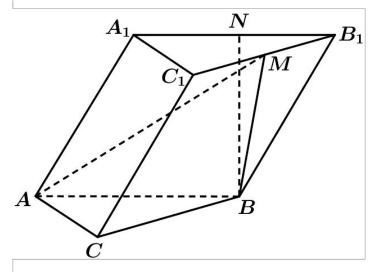
10, 15, 21, 则 $\frac{a}{n}$ 的最小值为_____.

16. 抛物线C:y² 2px p 0 的准线与 x 轴交于点 M , 过 C 的焦点 F 作斜率为 2 的直线交 C 于 A, B 两点,则 tan AMB ______.

四、解答题

17. 在正项等比数列 a_n 中, a₁ 4, a₄ a₃ 2a₂.

(1)球 a 的通项公式;


(2) 若数列 b_n 满足: $b_n = \frac{4n_2}{a}$, 求数列 b_n 的最大项.

18. 己知函数 f x x a lnx.

(1)讨论 f x 的单调性;

(2) 若不等式 xf x 2 x a 在 1, 上恒成立,求实数 a 的取值范围.

19. 如图,已知斜三棱柱 ABC - ABC 的底面是正三角形,点M ,N 分别是 BC 和 AB 的中点, AA AB BM 2, AAB 60.

(1) 求证: BN 平面 ABC_{1 1 1 1};

(2) 求二面角 M AB C 的余弦值.

- 20. 记 $_{n}^{S}$ 为数列 $_{n}^{a}$ 的前 $_{n}^{n}$ 项和,已知: $_{n}^{a}$ $_{n}^{1}$ $_{n}^{a}$ $_{n}^{0}$, $_{n}^{S}$ $_{n}^{a}$ $_{n}^{S}$ $_{n}^{S}$
- (1)求证:数列 $\frac{S}{a}$ 是等差数列,并求数列 a 的通项公式:
- (2)求数列 (1)n 1a 4an 的前ⁿ项和T_n.

21. 已知双曲线 $\frac{x^2}{a^2}$ $\frac{y^2}{b^2}$ 1 (a, b>0)的渐近线方程为 y $\frac{\sqrt{3}}{3}$, 左焦点为 F (-2, 0).

(1) 成双曲线 C 的标准方程;

(2)过点 Q (2,0) 作直线 1与双曲线 C 右支交于 A,B 两点,若 AQ 2QB, 求直线 1的方程.

22. 以坐标原点为对称中心,坐标轴为对称轴的椭圆过点C 0, 1, D ($\frac{8}{5}$, $\frac{3}{5}$).

(1)求椭圆的方程.	
(2)设 P 是椭圆上一点 (异于C,D), 直线 PC, PD 与 x 轴分别交于 M, N 两点. 证 l	明在 × 轴
上存在两点 A,B, 使得 MB NA 是定值,并求此定值.	

1. C

【分析】将题中抛物线的方程转化为标准方程,从而得解.

【详解】因为抛物线 y $\frac{1}{4}$ x₂ 可化为 x₂ 4y,

所以其准线方程为 y 1.

故选: C.

2. B

【分析】根据等差数列的通项公式和求和公式代入求解即可.

【详解】解:由题意得:

设等差数列的通项公式为 a_n a_n (n 1)d , 则 S_n na_n $\frac{n(n 1)}{2}d$

$$a = 6$$
 $S_{21}^{8} = 0$
 $a_{1} + 7d = 7$
 $21a_{1} + \frac{20 \times 21}{2}d = 0$

d= 2 解得: a₁=20

故选: B

3. C

【分析】根据导数的运算法则依次得出答案.

【详解】因为 $x_2 \ln x$ $x_2 \ln x$ $x_2 \ln x$ $2x \ln x$ $x_2 \frac{1}{x}$ $2x \ln x$ x ,所以 A 选项正确;

因为
$$\frac{x}{e_x}$$
 $\frac{x e_x x e_x}{e_x^2}$ $\frac{e_x x e_x}{e_x^2}$ $\frac{1}{e_x}$, 所以 B 选项正确;

因为 x2 3x x2 3x 2x 3x 1n3, 所以 C 选项错误;

因为
$$\cos 2x \frac{\pi}{6}$$
 $\sin 2x \frac{\pi}{6}$ $2x \frac{\pi}{6}$ $2\sin 2x \frac{\pi}{6}$, 所以 D 选项正确.

故选: C.

4. B

【分析】根据等差等比数列的性质即可求解.

【详解】解:数列 a_n 是等差数列, a_7 a_9 $\frac{4}{3}$,可得 $2a_8$ $\frac{4}{3}$,即 a_8 $\frac{2}{3}$,

数列 b_n 是等比数列, b_2 b_3 8,可得 b_3 8,可得 b_6 2,

$$\lim_{\substack{\frac{3}{3} \text{ b b} \\ \frac{4}{8} \text{ b}}} \frac{a}{b} \frac{a}{1} \frac{a}{b} \frac{3a}{b} \frac{2}{1} \frac{2}{4} \frac{2}{1} \frac{2}{3}.$$

故选: B.

5. B

【分析】根据圆外一定点到圆上一点距离的平方的几何意义进行求解即可.

【详解】圆C:x2 y2 8x 6y 16 0可化为 x 42 y 32 9.

x2 y2表示点 P x, y 到点 0 0, 0 的距离的平方,

因为
$$|C0|$$
 $\sqrt{4_2}$ 3² 5,

所以 X2 Y2 的最小值为 (5 3)2 4.

故选: B.

6. A

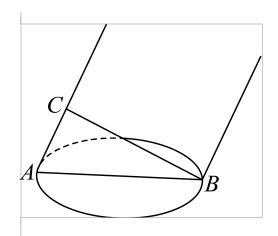
【分析】根据题意,求得 a_2 $\frac{1}{2}$, a_3 2, a_4 1, a_5 $\frac{1}{2}$, ,得到数列 a_n 构成以 4 项为周期的周期数列,即可求解.

【详解】由题意,数列 a_n 满足 a_{n-1} $\frac{1}{1}$ a_n , a_1 1, 可得 a_2 $\frac{1}{2}$, a_3 2, a_4 1, a_5 $\frac{1}{2}$, ,

所以数列 a_n 构成以 3 项为周期的周期数列,则 a_{100} $a_{3 \ 33 \ 1}$ a_1 1.

故选: A.

7. D


【分析】由图可得,求出椭圆的a,b,再代入离心率公式,即可得到答案;

【详解】由图可得,椭圆的2b为球的直径,故2b 24 b 12,

椭圆的 2a 为球在地面投影 AB ,故 2a $\frac{24}{\sin 60}$ $\frac{24}{\sqrt{3}}$ a $\frac{24}{\sqrt{3}}$

e
$$\frac{c}{a}$$
 $\sqrt{1}$ $\frac{b_2}{a_2}$ $\sqrt{1}$ $\frac{3}{4}$ $\frac{1}{2}$,

故选: D.

8. C

【分析】根据 f(1) f(1) 0,即可判断选项 A、C 与 D,选项 B 举出反例即可判断.

【详解】对于选项 A, 因为 f(1) f(1) 0, 则 f(1) f(1), 所以点 1, f(1) 与点 1, f(1) 关于 x 轴对称, 不在 x 轴同侧, 所以 A 错误;

对于选项 B, 因为 f(x) 的图象在 x 1处的切线斜率小于 0, 所以 f(1) 0,

又 f(1) f(1) 0, 所以 f(1) 0, 如果 f(x) ex,则 f(x) ex,满足 f(1) f(1) 0,

且 f (1) 0, $f^{(1)}$ 0, 但 f (x) e_x 的图象恒在 x 轴上方,所以 B 错误;

对于选项 C,因为 f(1) f(1) 0,如果 f(1) f(1) 0,则 y f(x) 与 y f(x) 的图象可能与 x 轴交于同一点,所以 C 正确;

对于选项 D, 因为 F(x) f(x) f(x), 则 F(1) f(1) f(1) 0, 所以函数 F(x) f(x) 存在零点,所以 D 错误.

故选: C.

9. AB

【分析】根据中垂线的定义可判断 A 选项;利用双曲线的定义可判断 B 选项;根据椭圆的定义可判断 C 选项;求出动点的轨迹方程可判断 D 选项.

【详解】设所求动点为P,由题意可得 $\left| F_{1,2} \right| = 8$.

对于 A 选项,由题意可知, $\begin{vmatrix} PF_1 \\ PF_2 \end{vmatrix}$,则点 P 的轨迹为线段 F_{12} 的垂直平分线,A 对;对于 B 选项,由题意可知, $\begin{vmatrix} PF_1 \\ PF_2 \end{vmatrix}$ $\begin{vmatrix} PF_2 \\ PF_2 \end{vmatrix}$ $\begin{vmatrix} F_1 \\ PF_2 \end{vmatrix}$,

所以,点 $_{P}$ 的轨迹是以 $_{_{1}}$ 、 $_{_{2}}$ 为焦点的双曲线的一支, $_{B}$ 对;

对于 C 选项, $|PF_1|$ $|PF_2|$ 8 $|F_1F_2|$,所以,点 P 的轨迹为线段 F_1F_2 , C 错;

对于 D 选项, 设点 P x, y , 则 | PF ₁ | 2 | PF ₂ | 2 x 4 2 y x 4 2 y 2 2 x 2 y 32 12,

可得 x2 y2 10,

满足条件的点 P 不存在, D 错.

故选: AB.

10. BC

【分析】令n=1时,由 S_n , a_n 求出 a_1 可判断 A; 由 a_n 4n 25 知, a_6 0, a_7 0,当n=6 时, S_n 取得的最小值可判断 B; 若 a_n 4n 3,求出数列 1_n a_n 的前17 项和可判断 C; 由数列的下标和性质可得 a_{1011} a_{1012} a_{1002} 0, a_{1000} a_{1024} a_{1024} a_{1023} 0,则 a_{2022} 0,则 a_{2023} 0 可判断 a_{2023} 0,则 a_{2023} 0,则 a_{2023} 0,则 a_{2023} 0,则 为 a_{2023} 0,则 a_{2

【详解】对于A,由 S_n 2n2 6n 1,当n=1时, a_1 S_1 3,

对于B, 若a_n 4n 25, 当n=1时, a₁ 21, 则a₆ 0, a₇ 0,

所以当n=6时, S_n 取得的最小值为 S_6 $\frac{6 \ a \ a}{2}$ 3 21 1 66;

对于C,若 a_n 4n 3 ,设数列 $1^n a_n$ 的前n 项和为n

15 913 61654865 33,故C正确;

对于 D, 数列 a_n 为等差数列, 且 a₁₀₁₁ a₁₀₁₂ 0, a₁₀₀₀ a₁₀₂₄ 0,

 $\lim_{1011} a \quad a \quad a \quad a \quad 0, a \quad a \quad a \quad a \quad 0 \; ,$

所以 S_{2022} $\frac{2022 \text{ a a}}{2}$ $0,S_{2023}$ $\frac{2023 \text{ a a}}{2}$ 0 ,

当 S_n 0时,n的最大值为2022,所以 D 不正确.

故选: BC.

11. AC

【分析】利用导数研究函数的单调性——判定选项即可.

【详解】由fx ex fx ex 1 0, fx 在R上是增函数,故A正确;

对于函数 f x x_{e^x} f x x 1 e_x , 当 x 1 f x 0, 当 x 1 f f f x 0, 当 x 1 f f f x 0, 1 f x 0, 1 f x 1 f x 0, 1 f x 1