专题 08 幂函数与二次函数

【考点预料】

- 1、幂函数的定义
- 一般地, $y=x^a(a\in R)$ (a为有理数)的函数,即以底数为自变量,幂为因变量,指数为常数的函数称为幂函数.
 - 2、幂函数的特征:同时满意一下三个条件才是幂函数
 - ① x^a 的系数为 1; ② x^a 的底数是自变量; ③指数为常数.
 - (3) 幂函数的图象和性质
 - 3、常见的幂函数图像及性质:

函数	y = x	$y = x^2$	$y = x^3$	$y = x^{\frac{1}{2}}$	$y = x^{-1}$
图象	у , , , , , , , , , , , , , , , , , , ,	<i>O</i> *		у <u>р</u> О х	
定义域	R	R	R	$\{x \mid x \ge 0\}$	$\{x \mid x \neq 0\}$
值域	R	$\{y \mid y \ge 0\}$	R	$\{y \mid y \ge 0\}$	$\{y \mid y \neq 0\}$
奇偶性	奇	偶	奇	非奇非偶	奇
单调性	在R上单调递增	在 (-∞, 0) 上单调递减, 在 (0, +∞) 上单调递增	在 R 上单调递增	在[0,+∞)上单调递增	在 (-∞, 0) 和 (0, +∞) 上单调递 减
公共点	(1, 1)	-			,

- 4、二次函数解析式的三种形式
- (1) 一般式: $f(x) = ax^2 + bx + c(a \neq 0)$;
- (2) 顶点式: $f(x) = a(x-m)^2 + n(a \neq 0)$; 其中,(m,n) 为抛物线顶点坐标,x = m 为对称轴方程.

- (3) 零点式: $f(x) = a(x x_1)(x x_2)(a \neq 0)$, 其中, x_1, x_2 是抛物线与x 轴交点的横坐标.
 - 5、二次函数的图像

二次函数
$$f(x) = ax^2 + bx + c(a \neq 0)$$
 的图像是一条抛物线,对称轴方程为 $x = -\frac{b}{2a}$,顶点坐标为 $\left(-\frac{b}{2a}, \frac{4ac - b^2}{4a}\right)$.

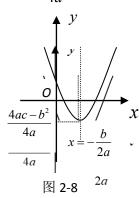
(1) 单调性与最值

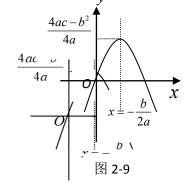
①当a>0时,如图所示,抛物线开口向上,函数在 $\left(-\infty,-\frac{b}{2a}\right]$ 上递减,在 $\left[-\frac{b}{2a},+\infty\right)$

上递增,当 $x = -\frac{b}{2a}$ 时, $f(x)_{\min} = \frac{4ac - b^2}{4a}$;②当a < 0时,如图所示,抛物线开口向下,

函数在 $(-\infty, -\frac{b}{2a}]$ 上递增,在 $[-\frac{b}{2a}, +\infty)$ 上递减,当 $x = -\frac{b}{2a}$ 时,;

$$f(x)_{\text{max}} = \frac{4ac - b^2}{4a} .$$





(2) 与 x 轴相交的弦长

当 $\Delta=b^2-4ac>0$ 时,二次函数 $f(x)=ax^2+bx+c(a\neq 0)$ 的图像与 x 轴有两个交点 $M_1(x_1,0) \ \pi \ M_2(x_2,0) \ , \ \ |M_1M_2|=|x_1-x_2|=\sqrt{(x_1+x_2)^2-4x_1x_2}=\frac{\sqrt{\Delta}}{|a|} \ .$

6、二次函数在闭区间上的最值

闭区间上二次函数最值的取得确定是在区间端点或顶点处.

对二次函数 $f(x) = ax^2 + bx + c(a \neq 0)$, 当 a > 0 时, f(x) 在区间[p,q]上的最大值是

$$M$$
 ,最小值是 m , 令 $x_0 = \frac{p+q}{2}$:

(1) 若
$$-\frac{b}{2a} \le p$$
, 则 $m = f(p), M = f(q)$;

(2)
$$\pm p < -\frac{b}{2a} < x_0, \quad \text{M} = f(-\frac{b}{2a}), M = f(q);$$

(3) 若
$$x_0 \le -\frac{b}{2a} < q$$
, 则 $m = f(-\frac{b}{2a}), M = f(p)$;

(4) 若
$$-\frac{b}{2a} \ge q$$
, 则 $m = f(q), M = f(p)$.

【方法技巧与总结】

- 1、幂函数 $y = x^a (a \in R)$ 在第一象限内图象的画法如下:
- ①当a < 0时, 其图象可类似 $y = x^{-1}$ 画出;
- ②当0 < a < 1时,其图象可类似 $v = x^{\frac{1}{2}}$ 画出;
- ③当a > 1时,其图象可类似 $v = x^2$ 画出.
- 2、实系数一元二次方程 $ax^2 + bx + c = 0$ ($a \neq 0$) 的实根符号与系数之间的关系

(1) 方程有两个不等正根
$$x_1, x_2 \Leftrightarrow \begin{cases} \Delta = b^2 - 4ac > 0 \\ x_1 + x_2 = -\frac{b}{a} > 0 \end{cases}$$
 $\begin{cases} x_1 + x_2 = \frac{c}{a} > 0 \end{cases}$

(2) 方程有两个不等负根
$$x_1, x_2 \Leftrightarrow \begin{cases} \Delta = b^2 - 4ac > 0 \\ x_1 + x_2 = -\frac{b}{a} < 0 \end{cases}$$
 $\begin{cases} x_1 + x_2 = -\frac{b}{a} < 0 \end{cases}$

(3) 方程有一正根和一负根,设两根为
$$x_1, x_2 \Leftrightarrow x_1x_2 = \frac{c}{a} < 0$$

3、一元二次方程 $ax^2 + bx + c = 0$ ($a \neq 0$)的根的分布问题

一般状况下须要从以下4个方面考虑:

(1) 开口方向; (2) 判别式; (3) 对称轴 $x = -\frac{b}{2a}$ 与区间端点的关系; (4) 区间端点函数值的正负.

设 x_1, x_2 为实系数方程 $ax^2 + bx + c = 0 (a > 0)$ 的两根,则一元二次 $ax^2 + bx + c = 0 (a > 0)$ 的根的分布与其限定条件如表所示.

根的分布	图像	限定条件
$m < x_1 < x_2$	m O x_1 x_2 x	$\begin{cases} \Delta > 0 \\ -\frac{b}{2a} > m \\ f(m) > 0 \end{cases}$
$x_1 < m < x_2$	$ \begin{array}{c c} & y \\ \hline & x_1 & m \\ \hline & 0 & x \end{array} $	f(m) < 0
$x_1 < x_2 < m$	y $x_1 x_2$ $m x$	$\begin{cases} \Delta > 0 \\ -\frac{b}{2a} < m \\ f(m) > 0 \end{cases}$

		$\Delta < 0$
		$\Delta = 0$ $x_1 = x_2 \le m$ $\exists \vec{x}_1 = x_2 \ge m$
在区间(m,n)内		$\begin{cases} \Delta > 0 \\ -\frac{b}{2a} < m \\ f(m) \ge 0 \end{cases}$
没有实根		$\begin{cases} \Delta > 0 \\ -\frac{b}{2a} > n \\ f(n) \ge 0 \end{cases}$
	m n x	$ \begin{cases} f(m) \le 0 \\ f(n) \le 0 \end{cases} $

Т

Т

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问:

https://d.book118.com/556020115003010152