
Wuhan University

3

Unix I/O Overview

 A Linux file is a sequence of m bytes:
 B0 , B1 , , Bk , , Bm-1

 Cool fact: All I/O devices are represented as files:
 /dev/sda2 (/usr disk partition)

 /dev/tty2 (terminal)

 Even the kernel is represented as a file:
 /boot/vmlinuz-3.13.0-55-generic (kernel image)

 /proc (kernel data structures)

Wuhan University

4

Unix I/O Overview

 Elegant map of files to devices allows kernel to export
simple interface called Unix I/O:
 Opening and closing files

 open()and close()

 Reading and writing a file

 read() and write()

 Changing the current file position (seek)

 indicates next offset into file to read or write

 lseek()

B0 B1 • • • Bk-1 Bk Bk+1 • • •

Current file position = k

Wuhan University

5

File Types

 Each file has a type indicating its role in the system
 Regular file: Contains arbitrary data

 Directory: Index for a related group of files

 Socket: For communicating with a process on another machine

 Other file types beyond our scope
 Named pipes (FIFOs)

 Symbolic links

 Charac nd block devices

Wuhan University

6

Regular Files

 A regular file contains arbitrary data

 Applications often distinguish between text files and binary
files
 Text files are regular files with only ASCII or Unicode characters

 Binary files are everything else

 e.g., object files, JPEG images

 Kernel doesn’t know the difference!

 Text file is sequence of text lines
 Text line is sequence of chars terminated by newline char (‘\n’)

 Newline is 0xa, same as ASCII line feed character (LF)

 End of line (EOL) indicators in other systems
 Linux and Mac OS: ‘\n’ (0xa)

 line feed (LF)

 Windows and Inte protocols: ‘\r\n’ (0xd 0xa)

 Carriage return (CR) followed by line feed (LF)

Wuhan University

7

Directories

 Directory consists of an array of links
 Each link maps a filename to a file

 Each directory contains at least two entries
 . (dot) is a link to itself

 .. (dot dot) is a link to the parent directory in the directory
hierarchy (next slide)

 Commands for manipulating directories
 mkdir: create empty directory

 ls: view directory contents

 rmdir: delete empty directory

Wuhan University

8

Directory Hierarchy

 All files are organized as a hierarchy anchored by root directory
named / (slash)

 Kernel maintains current working directory (cwd) for each process
 Modified using the cd command

/

bin/ dev/ etc/ home/ usr/

bash tty1 group passwd droh/ bryant/ include/ bin/

stdio.h vimsys/

unistd.h

o.c

Wuhan University

9

Pathnames

 Locations of files in the hierarchy denoted by pathnames
 Absolute pathname starts with ‘/’ and denotes path from root

 /home/droh/ o.c

 Relative pathname denotes path from current working directory

 ../droh/ o.c

/

bin/ dev/ etc/ home/ usr/

bash tty1 group passwd droh/ bryant/ include/ bin/

stdio.h vimsys/

unistd.h

o.c

cwd: /home/bryant

Wuhan University

10

Opening Files

 Opening a file informs the kernel that you are getting ready to
access that file

 Returns a small identifying integer file descriptor
 fd == -1 indicates that an error occurred

 Each process created by a Linux s begins life with three
open files associated with a terminal:
 0: standard input (stdin)

 1: standard output (stdout)

 2: standard error (stderr)

int fd; /* file descriptor */

if ((fd = open("/etc/hosts", O_RDONLY)) < 0) {

perror("open");

exit(1);

}

Wuhan University

11

Closing Files

 Closing a file informs the kernel that you are finished
accessing that file

 Closing ready closed file is a recipe for disaster in
threaded programs (more on this later)

 Moral: Always check return codes, even for seemingly
benign functions such as close()

int fd; /* file descriptor */

int retval; /* return value */

if ((retval = close(fd)) < 0) {

perror("close");

exit(1);

}

Wuhan University

12

Reading Files

 Reading a file copies bytes from the current file position to
memory, and then updates file position

 Returns number of bytes read from file fd into buf
 Return type ssize_t is signed integer

 nbytes < 0 indicates that an error occurred

 Short counts (nbytes < sizeof(buf)) are possible and are not
errors!

char buf[512];

int fd; /* file descriptor */

int nbytes; /* number of bytes read */

/* Open file fd ... */

/* Then read up to 512 bytes from file fd */

if ((nbytes = read(fd, buf, sizeof(buf))) < 0) {

perror("read");

exit(1);

}

以上内容仅为本文档的试下载部分，为可阅读页数的一半内容。如

要下载或阅读全文，请访问：https://d.book118.com/56503031032

1011230

https://d.book118.com/565030310321011230
https://d.book118.com/565030310321011230

