
Wuhan University

3

Unix I/O Overview

 A Linux file is a sequence of m bytes:
 B0 , B1 , , Bk , , Bm-1

 Cool fact: All I/O devices are represented as files:
 /dev/sda2 (/usr disk partition)

 /dev/tty2 (terminal)

 Even the kernel is represented as a file:
 /boot/vmlinuz-3.13.0-55-generic (kernel image)

 /proc (kernel data structures)

Wuhan University

4

Unix I/O Overview

 Elegant map of files to devices allows kernel to export
simple interface called Unix I/O:
 Opening and closing files

 open()and close()

 Reading and writing a file

 read() and write()

 Changing the current file position (seek)

 indicates next offset into file to read or write

 lseek()

B0 B1 • • • Bk-1 Bk Bk+1 • • •

Current file position = k

Wuhan University

5

File Types

 Each file has a type indicating its role in the system
 Regular file: Contains arbitrary data

 Directory: Index for a related group of files

 Socket: For communicating with a process on another machine

 Other file types beyond our scope
 Named pipes (FIFOs)

 Symbolic links

 Charac nd block devices

Wuhan University

6

Regular Files

 A regular file contains arbitrary data

 Applications often distinguish between text files and binary
files
 Text files are regular files with only ASCII or Unicode characters

 Binary files are everything else

 e.g., object files, JPEG images

 Kernel doesn’t know the difference!

 Text file is sequence of text lines
 Text line is sequence of chars terminated by newline char (‘\n’)

 Newline is 0xa, same as ASCII line feed character (LF)

 End of line (EOL) indicators in other systems
 Linux and Mac OS: ‘\n’ (0xa)

 line feed (LF)

 Windows and Inte protocols: ‘\r\n’ (0xd 0xa)

 Carriage return (CR) followed by line feed (LF)

Wuhan University

7

Directories

 Directory consists of an array of links
 Each link maps a filename to a file

 Each directory contains at least two entries
 . (dot) is a link to itself

 .. (dot dot) is a link to the parent directory in the directory
hierarchy (next slide)

 Commands for manipulating directories
 mkdir: create empty directory

 ls: view directory contents

 rmdir: delete empty directory

Wuhan University

8

Directory Hierarchy

 All files are organized as a hierarchy anchored by root directory
named / (slash)

 Kernel maintains current working directory (cwd) for each process
 Modified using the cd command

/

bin/ dev/ etc/ home/ usr/

bash tty1 group passwd droh/ bryant/ include/ bin/

stdio.h vimsys/

unistd.h

o.c

Wuhan University

9

Pathnames

 Locations of files in the hierarchy denoted by pathnames
 Absolute pathname starts with ‘/’ and denotes path from root

 /home/droh/ o.c

 Relative pathname denotes path from current working directory

 ../droh/ o.c

/

bin/ dev/ etc/ home/ usr/

bash tty1 group passwd droh/ bryant/ include/ bin/

stdio.h vimsys/

unistd.h

o.c

cwd: /home/bryant

Wuhan University

10

Opening Files

 Opening a file informs the kernel that you are getting ready to
access that file

 Returns a small identifying integer file descriptor
 fd == -1 indicates that an error occurred

 Each process created by a Linux s begins life with three
open files associated with a terminal:
 0: standard input (stdin)

 1: standard output (stdout)

 2: standard error (stderr)

int fd; /* file descriptor */

if ((fd = open("/etc/hosts", O_RDONLY)) < 0) {

perror("open");

exit(1);

}

Wuhan University

11

Closing Files

 Closing a file informs the kernel that you are finished
accessing that file

 Closing ready closed file is a recipe for disaster in
threaded programs (more on this later)

 Moral: Always check return codes, even for seemingly
benign functions such as close()

int fd; /* file descriptor */

int retval; /* return value */

if ((retval = close(fd)) < 0) {

perror("close");

exit(1);

}

Wuhan University

12

Reading Files

 Reading a file copies bytes from the current file position to
memory, and then updates file position

 Returns number of bytes read from file fd into buf
 Return type ssize_t is signed integer

 nbytes < 0 indicates that an error occurred

 Short counts (nbytes < sizeof(buf)) are possible and are not
errors!

char buf[512];

int fd; /* file descriptor */

int nbytes; /* number of bytes read */

/* Open file fd ... */

/* Then read up to 512 bytes from file fd */

if ((nbytes = read(fd, buf, sizeof(buf))) < 0) {

perror("read");

exit(1);

}

以上内容仅为本文档的试下载部分，为可阅读页数的一半内容。如

要下载或阅读全文，请访问：https://d.book118.com/56503031032

1011230

https://d.book118.com/565030310321011230
https://d.book118.com/565030310321011230

