# 2023-2024学年安徽省安庆市高三模拟考试数学试题

一、单选题:本题共8小题,每小题5分,共40分。在每小题给出的选项中,只有一项是符合题目要求 的。

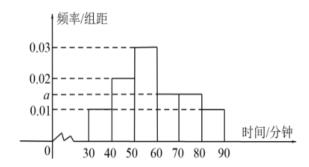
1. 已知集合 
$$M=\left\{x\left|\frac{x}{x-1}\leqslant 0\right.\right\}$$
 ,  $N=\left\{x\left|\left(\frac{2}{3}\right)^x>1\right.\right\}$  , 则  $M\cap N=$  ( )

- B.  $\{x|x < 0\}$  C.  $\{x|0 \leqslant x < 1\}$  D.  $\{x|0 < x < 1\}$

**2.** 若复数 z 满足  $i \cdot z = 2022 + i^{2023}(i$  是虚数单位), z 的共轭复数是  $\overline{z}$ , 则  $z - \overline{z}$  的模是( )

- A.  $\sqrt{4044^2+4}$
- B. 4044
- C. 2
- D. 0

3. 为了解"双减"政策实施后学生每天的体育活动时间,研究人员随机调查了该地区 1000 名学生每天进 行体育运动的时间,按照时长(单位:分钟)分成6组:第一组[30,40),第二组[40,50),第三组[50,60),第四 组[60,70),第五组[70,80),第六组[80,90],经整理得到如图的频率分布直方图,则可以估计该地区学生每天 体育活动时间的第25百分位数约为(



- A. 42.5 分钟
- B. 45.5 分钟
- C. 47.5 分钟 D. 50 分钟

4. 已知非零向量  $\overrightarrow{a}$  ,  $\overrightarrow{b}$  的夹角为  $\theta$  ,  $|\overrightarrow{a}+\overrightarrow{b}|=2$  ,且  $|\overrightarrow{a}||\overrightarrow{b}|\geqslant \frac{4}{3}$  ,则夹角  $\theta$  的最小值为 ( )

- C.  $\frac{\pi}{3}$

5. 已知第二象限角  $\alpha$  满足  $\sin (\pi + \alpha) = -\frac{2}{3}$ ,则  $\sin 2\beta - 2\sin(\alpha + \beta)\cos(\alpha - \beta)$  的值为( )

- **A.**  $-\frac{1}{0}$
- B.  $-\frac{4\sqrt{5}}{9}$  C.  $\frac{1}{9}$  D.  $\frac{4\sqrt{5}}{9}$

**6.** 已知等差数列  $\{a_n\}$  满足  $a_1^2 + a_4^2 = 4$ ,则  $a_2 + a_3$  不可能取的值是( )

- **A.** -3
- B.  $-2\sqrt{2}$  C.  $\frac{\sqrt{3}}{2}$  D.  $\sqrt{2}$

7. 已知函数  $f(x) = \begin{cases} x|\ln x|, x>0 \\ -xe^x, x<0 \end{cases}$ ,若函数  $g(x) = f(x) - |x^2 - kx|$  恰有 3 个零点,则实数 k 的取值范围

是( )

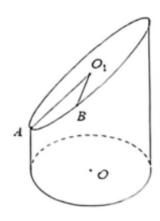
A. 
$$(-\infty, -1) \cup (1, +\infty)$$

B. 
$$(1, +\infty)$$

C. 
$$(-\infty, -1] \cup (1, +\infty)$$

**D.** 
$$(-\infty, -1) \cup [1, +\infty)$$

8. 一底面半径为  $\mathbf{1}$  的圆柱,被一个与底面成  $45^{\circ}$  角的平面所截 (如图), $\mathbf{O}$  为底面圆的中心,  $O_1$  为截面的中 心,A 为截面上距离底面最小的点,A 到圆柱底面的距离为 1,B 为截面图形弧上的一点,且  $\angle AO_1B = 60^\circ$ ,则点 B 到底面的距离是( )



**A.** 
$$\frac{7}{4}$$

B. 
$$\frac{14-2\sqrt{7}}{7}$$
 C.  $\frac{14-\sqrt{7}}{7}$  D.  $\frac{\sqrt{14}}{2}$ 

C. 
$$\frac{14 - \sqrt{7}}{7}$$

D. 
$$\frac{\sqrt{14}}{2}$$

二、多选题:本题共4小题,共20分。在每小题给出的选项中,有多项符合题目要求。全部选对的得5 分, 部分选对的得2分, 有选错的得0分。

- 9. 将函数  $f(x) = \sin \omega x + a \cos \omega x (a > 0, \omega > 0)$  图象上点的横坐标缩短为原来的  $\frac{1}{2}$  倍,然后将所得图象向 右平移 $\frac{\pi}{3}$ 个单位,得到函数 $g(x)=2\cos(2x+\varphi)$ 的图象.则下列说法中正确的是( )
- A. 函数 f(x) 的最小正周期为  $2\pi$
- B. 函数 g(x) 的图象有一条对称轴为  $x = -\frac{\pi}{12}$
- C. 函数 f(x) 的单调递增区间为  $\left[2k\pi + \frac{\pi}{6}, 2k\pi + \frac{7\pi}{6}\right](k \in \mathbb{Z})$
- D. 函数 g(x) 在区间  $\left[0, \frac{\pi}{2}\right]$  上的值域为  $\left[-\sqrt{3}, 2\right]$
- **10**. 在三棱锥 A-BCD中,G,E,P,H 分别是  $\triangle BCD$ ,  $\triangle ACD$ ,  $\triangle ABD$ ,  $\triangle ABC$  的重心. 则下列 命题中正确的有()

A. 
$$GE //$$
 平面  $ABD$ 

$$\mathsf{B.} \ \ V_{\equiv \overline{\mathfrak{b}} \mathfrak{t} \mathfrak{t} A - GBC} = \frac{1}{3} V_{\equiv \overline{\mathfrak{b}} \mathfrak{t} \mathfrak{t} A - DBC}$$

- C. 四条直线 AG, BE, CP, DH 相交于一点 D. AB = 2GE
- 11. 牛顿用"作切线"的方法求函数的零点时,给出了"牛顿数列",它在航空航天中应用非常广泛. 其定 义是:对于函数 f(x) 和数列  $\{x_n\}$ ,若  $(x_{n+1}-x_n)f'(x_n)+f(x_n)=0$ ,则称数列  $\{x_n\}$  为牛顿数列.已知函

数  $f(x) = x^2 - 4$ ,数列  $\{x_n\}$  为牛顿数列,且  $a_n = \ln \frac{x_n + 2}{x_n - 2}$ ,  $a_1 = 1$ ,  $x_n > 2(n \in N^*)$ ,则下列结论中正确的是( )

A. 
$$x_1 = \frac{2e+2}{e-1}$$

B. 
$$\frac{x_{n+1}+2}{x_{n+1}-2} = \frac{(x_n-2)^2}{(x_n+2)^2}$$

C.  $\{a_n\}$  是等比数列

**D.** 
$$a_6 = 32$$

- **12.** 已知 A、B 为抛物线  $y = x^2$  上两点,以 A,B 为切点的抛物线的两条切线交于点 P,设以 A,B 为切点的抛物线的切线斜率为  $k_A$ , $k_B$ ,过 A,B 的直线斜率为  $k_{AB}$ ,则以下结论正确的有( )
- A.  $k_A$ ,  $k_{AB}$ ,  $k_B$  成等差数列;
- B. 若点 P 的横坐标为 $\frac{1}{2}$ ,则  $k_{AB}=\frac{1}{2}$ ;
- C. 若点 P 在抛物线的准线上,则  $\triangle ABP$  不是直角三角形;
- D. 若点 P 在直线 y = 2x 2上,则直线 AB 恒过定点;
- 三、填空题: 本题共4小题, 每小题5分, 共20分。
- **13.** 设某批产品中,甲、乙、丙三个车间生产的产品分别占 45% 、 35% 、 20% ,甲、乙车间生产的产品的次品率分别为 2% 和 3%. 现从中任取一件,若取到的是次品的概率为 2.95% ,则推测丙车间的次品率为
- **14.** 在棱长为 **4** 的正方体  $ABCD A_1B_1C_1D_1$ 中,点 **E** 是棱  $AA_1$ 上一点,且 AE = 1. 过三点 **E**、  $B_1$  、  $C_1$  的平面截该正方体的内切球,所得截面圆面积的大小为\_\_\_\_\_。
- **15**. 已知双曲线  $\frac{y^2}{a^2} \frac{x^2}{b^2} = 1$ , (a > 0, b > 0) 的两个焦点分别为 $F_1$ , $F_2$ ,过 $\mathbf{x}$  轴上方的焦点 $F_1$ 的直线与双曲线上支交于 $\mathbf{M}$ , $\mathbf{N}$  两点,以 $NF_2$ 为直径的圆经过点 $\mathbf{M}$ ,若 $|MF_2|$ ,|MN|, $|NF_2|$  成等差数列,则该双曲线的渐近线方程为\_\_\_\_\_\_.
- **16.** 已知函数  $f(x) = e^{ax} ax$ ,其中 a > 0, 若不等式  $f'(x) \ge 3(x^2 \frac{1}{x}) \ln x$  对任意 x > 1 恒成立,则 a 的最小值为\_\_\_\_\_。
- 四、解答题:本题共6小题,共70分。解答应写出文字说明,证明过程或演算步骤。
- 17. (本小题 10 分)

已知公差不为  $\mathbf{0}$  的等差数列  $\{a_n\}$  的前  $\mathbf{n}$  项和为  $S_n$ ,  $S_9 = 81$ , 且  $a_2$ ,  $a_5$ ,  $a_{14}$  成等比数列.

(1) 求数列  $\{a_n\}$  的通项公式  $a_n$ ;

(
$$\|$$
) 设  $b_n = \sqrt{1 + \frac{1}{S_n} + \frac{1}{S_{n+1}}}$ , 求数列  $\{b_n\}$  的前  $n$  项和  $T_n$ .

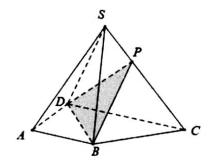
# 18. (本小题 12 分)

在  $\triangle ABC$  中, 角  $\boldsymbol{A}$ ,  $\boldsymbol{B}$ ,  $\boldsymbol{C}$  所对的边分别为  $\boldsymbol{a}$ ,  $\boldsymbol{b}$ ,  $\boldsymbol{c}$ ,  $2b\sin C \cdot \tan \frac{A}{2} = a$ .

- (1) 若角  $B = \frac{\pi}{6}$ ,求角 A 的大小;

# 19. (本小题 12 分)

如图,在四棱锥 S-ABCD 中,底面 ABCD 是梯形, AB // CD ,  $\angle BAD=90^\circ$  , CD=2AB=2AD=2 , 侧面 SCD 是等边三角形, 侧面 SBC 是等腰直角三角形, SB=BC .



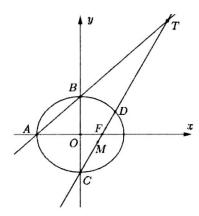
- (I) 求证: *SB*⊥平面 *ABCD*;
- (॥) 若 P 是棱 SC 上的一点,且 SA // 平面 PBD. 求平面 PBD 与平面 ABCD 所成二面角的余弦值. 20.



该题正在审核中, 敬请期待~

#### 21. (本小题 12 分)

如图,在平面直角坐标系 xOy 中,A,B,C 分别为椭圆 E:  $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 (a > b > 0)$  的三个项点, F(c,0) 为其右焦点,直线 AB 与直线 CF 相交于点 T.



- (1) 若点 T 在直线 I:  $x = \frac{a^2}{c}$  上,求椭圆 E 的离心率;
- (  $\blacksquare$  ) 设直线 CF 与椭圆 E 的另一个交点为 D,M 是线段 CD 的中点,椭圆 E 的离心率为  $\frac{1}{2}$ ,试探究  $\frac{|TM|}{|CD|}$  的 值是否为定值 ( 与 a,b 无关 ). 若为定值,求出该定值;若不为定值,请说明理由.

# 22. (本小题 12 分)

已知函数  $f(x)=a\ln\,x+bx^2e^{1-x}$ , a,  $b\in R.e\approx 2.71828\cdots$ .

- (1) 若曲线 y = f(x) 在点 (2, f(2)) 处的切线方程是  $y = x + \ln 2$ , 求 **a** 和 **b** 的值;
- (1) 若 a = e,且 f(x) 的导函数 f'(x) 恰有两个零点,求 b 的取值范围.

# 答案和解析

#### 1. 【答案】A

#### 【解析】【分析】

本题考查集合的基本运算,属于基础题.

先化简M,N,再利用交集的运算进行求解.

#### 【解答】

 $\mathbf{M}:\ M=\{x|0\leqslant x<1\}\,,\ N=\{x|x<0\}\,$ 

所以 $M \cap N = \emptyset$ ,

故选A.

#### 2. 【答案】B

#### 【解析】【分析】

本题考查复数代数形式的乘法运算,考查了共轭复数和模的概念,属基础题

由i的n次幂的周期性对复数进行化简,再结合共轭复数的定义求得z,再由模的公式求得答案

# 【解答】

解:  $\because i \cdot z = 2022 - i$ ,

z = -1 - 2022i,

 $\overline{z} = -1 + 2022i$  ,

 $\therefore z - \overline{z} = -4044i.$ 

则 $z-\overline{z}$ 的模是4044. 故选B.

#### 3. 【答案】 C

#### 【解析】【分析】

本题考查了频率分布直方图和百分位数,是基础题.

由频率之和为 1 求出 a = 0.015,利用求百分位数的公式进行求解.

# 【解答】

解: 由频率之和为 1 得: 10(0.01 + 0.02 + 0.03 + 2a + 0.01) = 1,

解得: a = 0.015,

 $\pm 10 \times 0.01 = 0.1 < 0.25$ ,  $10 \times 0.01 + 10 \times 0.02 = 0.3 > 0.25$ ,

故第 25 百分位数位于 [40,50] 内,

则第 **25** 百分位数为 
$$40 + \frac{0.25 - 0.1}{0.3 - 0.1} \times 10 = 47.5$$
,

可以估计该地区学生每天体育活动时的第25百分位数约为47.5.

故选C.

### 4. 【答案】C

### 【解析】【分析】

本题考查了向量的数量积运算性质、向量的夹角公式,属于中档题.

利用向量的数量积运算性质、向量的夹角公式即可得出.

#### 【解答】

解: 由
$$|\overrightarrow{a} + \overrightarrow{b}|^2 = 4$$
有, $|\overrightarrow{a}|^2 + |\overrightarrow{b}|^2 + 2|\overrightarrow{a}| \cdot |\overrightarrow{b}|\cos\theta = 4$ ,

$$\mbox{EV } 4\geqslant 2|\overrightarrow{a}|\cdot|\overrightarrow{b}|(1+\cos\theta)\geqslant \frac{8}{3}(1+\cos\theta) \mbox{ ,}$$

因此 
$$\cos \theta \leqslant \frac{1}{2}$$
,

由于 
$$\theta \in [0,\pi]$$
 ,所以  $\frac{\pi}{3} \leqslant \theta \leqslant \pi$  ,

于是夹角 $\theta$ 的最小值为 $\frac{\pi}{3}$ .

故选C.

#### 5. 【答案】D

#### 【解析】【分析】

本题考查两角和与差的三角函数,同角三角函数基本关系式的应用,属于基础题.

求出 
$$\cos \alpha = -\sqrt{1-(\frac{2}{3})^2} = -\frac{\sqrt{5}}{3}$$
,利用两角和与差的三角函数化简求解即可.

#### 【解答】

解:由题意得 $\sin \alpha = \frac{2}{3}$ ,且 $\alpha$ 为第二象限角,

所以 
$$\cos \alpha = -\sqrt{1-(\frac{2}{3})^2} = -\frac{\sqrt{5}}{3}$$
,

于是  $\sin 2\beta - 2\sin(\alpha + \beta)\cos(\alpha - \beta)$ 

$$= \sin[(\alpha + \beta) - (\alpha - \beta)] - 2\sin(\alpha + \beta)\cos(\alpha - \beta)$$

$$= -[\sin(\alpha + \beta)\cos(\alpha - \beta) + \cos(\alpha + \beta)\sin(\alpha - \beta)]$$

 $=-\sin 2\alpha$ 

 $= -2\sin\alpha\cos\alpha$ 

$$=-2 \times \frac{2}{3} \times (-\frac{\sqrt{5}}{3}) = \frac{4\sqrt{5}}{9}.$$

故选D.

#### 6. 【答案】A

#### 【解析】【分析】

本题考查了等差数列的性质,结合三角代换求最值,是基础题.

设  $a_1 = 2\cos\theta$  ,  $a_4 = 2\sin\theta$  结合等差数列的性质可得  $a_2 + a_3 = a_1 + a_4 = 2\sqrt{2}\sin(\theta + \frac{\pi}{4})$  , 结合正弦函数的值域可得答案.

# 【解答】

解: 设  $a_1 = 2\cos\theta$ ,  $a_4 = 2\sin\theta$ ,  $\theta \in [0, 2\pi)$ ,

$$\text{ for } a_2+a_3=a_1+a_4=2\sqrt{2}\sin(\theta+\frac{\pi}{4}) \text{ , } \theta+\frac{\pi}{4}\in [\frac{\pi}{4},\frac{9\pi}{4}),$$

所以 $a_2 + a_3 \in [-2\sqrt{2}, 2\sqrt{2}].$ 

故选 A.

#### 7. 【答案】 A

#### 【解析】【分析】

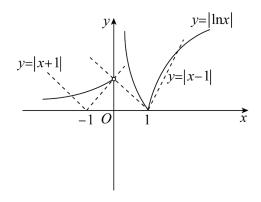
本题主要考查函数的零点问题,函数与方程的应用,数形结合思想,属于中档题.

由题可得要使 g(x) 恰有 **3** 个零点,只需方程  $\frac{f(x)}{|x|} = |x - k|$  恰有 **3** 个实根即可,作出函数  $y = \frac{f(x)}{|x|}$  和 y = |x - k| 的大致图象,利用数形结合进行求解即可.

#### 【解答】

解:由题意得,方程 $\frac{f(x)}{|x|} = |x-k|$ 有三个不等的实数根.

$$y = \frac{f(x)}{|x|} = \begin{cases} |\ln x|, x > 0 \\ e^x, x < 0 \end{cases}$$
, 分别作出函数  $y = \frac{f(x)}{|x|}$  和  $y = |x - k|$  的图象,



可得 k 的取值范围是  $(-\infty, -1) \cup (1, +\infty)$ .

故选 A.

#### 8. 【答案】 C

#### 【解析】【分析】

本题考查了点面距离和椭圆的几何性质,是中档题.

易得截面椭圆是以 $O_1$ 为中心,A为长轴端点的椭圆,利用解析几何知识,结合点到直线的距离,求解即可.

# 【解答】

解:圆柱半径为1,截面与底边所成角为 $45^{\circ}$ ,作 $AM \perp OO_1$ 于M,

则 
$$\angle MAO_1 = 45^{\circ}$$
 ,  $AO_1 = \sqrt{2}$ .

截面椭圆是以 $O_1$ 为中心,A为长轴端点的椭圆,其长轴长为 $2\sqrt{2}$ ,短轴长为2

在平面直角坐标系中,

不妨令椭圆的方程为 $\frac{x^2}{2} + y^2 = 1$ ,作 $BC \perp AO_1 \mp C$ ,因为 $AO_1B = 60^\circ$ ,

则可令直线  $O_1B$  的方程为  $y = \sqrt{3}x$ ,

所以设 $B(x,\sqrt{3}x)$ ,

又因为 $B(x,\sqrt{3}x)$ 在椭圆 $\frac{x^2}{2} + y^2 = 1$ 

上,解得: 
$$x = \pm \frac{\sqrt{14}}{7}$$
,

所以
$$CO_1 = \frac{\sqrt{14}}{7}$$
,  $BO_1 = \frac{2\sqrt{14}}{7}$ ,

过 
$$C$$
 作  $CD\perp OO_1$  ,则  $O_1D=rac{\sqrt{2}}{2}CO_1=rac{\sqrt{7}}{7}$  ,  $OD=OO_1-O_1D=2-rac{\sqrt{7}}{7}=rac{14-\sqrt{7}}{7}$  ,

由于 BC,CD 均平行于底面,故 B 点到底面的距离是  $\frac{14-\sqrt{7}}{7}$ .

故选C.

# 9. 【答案】ABD

# 【解析】【分析】

本题考查正弦型函数的图像变换、对称轴、对称中心、单调区间,求正弦型函数的值域,主要考查学生的运算能力和转换能力,属于中档题.

首先根据正弦型函数的伸缩平移变换,结合辅助角公式,得到 $\omega$ , $\varphi$ 的值,进而得到f(x),g(x)的解析式。然后根据正弦型函数或余弦型函数的图象性质,逐项判定即可。

#### 【解答】

解: 因为f(x)与g(x)的图象振幅相等,所以 $\sqrt{1+a^2}=2$ ,而a>0,因此 $a=\sqrt{3}$ .

所以函数  $f(x) = 2\sin(\omega x + \frac{\pi}{3})$ . 将函数 f(x) 的图象上的点的横坐标缩短为原来的  $\frac{1}{2}$  倍,

然后将所得图象向右平移 $\frac{\pi}{3}$ 个单位得到函数 $y=2\sin(2\omega x+\frac{\pi}{3}-\frac{2\omega\pi}{3})$ 的图象,

所以 
$$g(x)=2\sin(2\omega x+\frac{\pi}{3}-\frac{2\omega\pi}{3})$$
,由于  $\omega>0$ ,从而  $\omega=1$ .

于是 
$$\sin(2x - \frac{\pi}{3}) = \cos(2x + \varphi)$$
,

即 
$$\cos(2x-rac{5\pi}{6})=\cos(2x+arphi)$$
 ,

从而 
$$\varphi=2k\pi-rac{5\pi}{6}$$
,  $k\in Z$ .

因此 
$$f(x)=2\sin(x+\frac{\pi}{3})$$
 ,  $g(x)=2\cos(2x-\frac{5\pi}{6})$  ,

函数 f(x) 的最小正周期为  $2\pi$ , **A** 正确.

令
$$x = -\frac{\pi}{12}$$
,  $g(x) = -2$ , 所以 $x = -\frac{\pi}{12}$ 是函数 $g(x)$ 的一条对称轴, 故  $\textbf{\textit{B}}$  正确;

所以单调递增区间为  $[2k\pi - \frac{5\pi}{6}, 2k\pi + \frac{\pi}{6}](k \in \mathbb{Z})$ , C 不正确.

$$\stackrel{\text{def}}{=} x \in [0, \frac{\pi}{2}], \quad 2x - \frac{5\pi}{6} \in [-\frac{5\pi}{6}, \frac{\pi}{6}],$$

所以函数 g(x) 在区间  $[0,\frac{\pi}{2}]$  的值域为  $[-\sqrt{3},2]$  ,  ${\bf D}$  正确.

故选 ABD.

#### 10. 【答案】 ABC

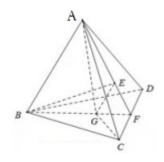
#### 【解析】【分析】

本题考查了线面平行的判定,棱锥的体积,直线与直线的位置关系,属于中档题.

分别延长 BG,AE 交 CD 于中点 F,可得 BG: GF = AE: EF = 2:1,故 GE//AB,再逐项分析即可得到答案.

#### 【解答】

解:由于G,E分别是 $\Delta BCD$ , $\Delta ACD$ 的重心,所以分别延长BG,AE 交CD于中点F,



因为BG: GF = 2:1, AE: EF = 2:1,

所以BG: GF = AE: EF = 2:1,故GE//AB,

又 $GE \not\subset$ 平面 ABD, $AB \subset$ 平面 ABD,因此GE //平面 ABD,A 正确.

因为G是 $\triangle BCD$ 的重心,所以 $S_{\triangle GBC} = \frac{1}{3}S_{\triangle DBC}$ ,因此 $V_{= \overline{\psi} \oplus A - GBC} = \frac{1}{3}V_{= \overline{\psi} \oplus A - DBC}$ ,B 正确.

显然线段 AG, BE 的交点 K 分 AG, BE 为 BK: KE = AK: KG = 3:1,

同理线段 CP 和线段 BE 交点也是 K, AG, DH 的交点也是 K,

因此四条直线 AG, BE, CP, DH 相交于一点, C 正确.

因为GE//AB, 所以AB:GE=BF:GF=3:1. 因此AB=3GE, **D**错误.

故选 ABC.

# 11.【答案】ACD

#### 【解析】【分析】

本题主要考查导数与数列的综合、等比数列的定义及基本量的计算,属于中档题.

由  $a_1=1$ ,代入计算可判定 A;根据递推关系得  $\frac{x_{n+1}+2}{x_{n+1}-2}=\frac{(x_n+2)^2}{(x_n-2)^2}$ 可判定 B;易得  $a_{n+1}=2a_n$ ,由等比

数列判定CD.

#### 【解答】

解: 由 
$$a_n = \ln \frac{x_n + 2}{x_n - 2}$$
得,  $a_1 = 1 = \ln \frac{x_1 + 2}{x_1 - 2}$ , 解得  $x_1 = \frac{2e + 2}{e - 1}$ .

$$(x_{n+1}-x_n)f'(x_n)+f(x_n)=0$$
 就是  $x_{n+1}=x_n-\frac{f(x_n)}{f'(x_n)}$ .

曲 
$$f(x) = x^2 - 4$$
 得,  $x_{n+1} = x_n - \frac{x_n^2 - 4}{2x_n} = \frac{x_n^2 + 4}{2x_n}$ .

一方面, 
$$x_{n+1}+2=\frac{(x_n+2)^2}{2x_n}$$
.

另一方面,
$$x_{n+1}-2=\frac{(x_n-2)^2}{2x_n}$$
.