考前回归知识必备

*1 集合与常用逻辑用语

- 朱口马巾/1/24/11/1							
	概令	$A=\{a_1$	$\{a_1, a_2, a_3 K \ a_n\}$	元素	特点: 互异性、	无序性、确	角定性。
	186767	一组对象的全	E体. $x \in A, x \notin A$				
		子集	A的子集有 2" 个,	真子集	€有2ⁿ−1个 ,	$\emptyset \subseteq A$;
集	关系	真子集	非空真子集有2"-2个,	非空子	集有 2 ⁿ -1 个,	$A \subseteq B$,	$B \subseteq C \Rightarrow A \subseteq C$
合		相等	$A \subseteq B, B \subseteq A \Leftrightarrow A = B$				
		交集	$A \mid B = \{x \mid x \in A, \exists x \in B\}$	3 }		印韦恩图是	是进行交、并、补运
	运算	并集	$A \cup B = \{x \mid x \in A, \vec{\boxtimes} x \in B\}$	8}		拿时不要忘	了集合本身和空集
		补集	$C_U A = \{ x \mid x \in U \perp \exists x \notin A \}$		这两种特殊情况	己,补集思	想常运用于解决否
		概念	能够判断真假的语句。				
常用逻	命题	四种命题	原命题: 若 p , 则 q 逆命题: 若 q , 则 p 否命题: 若 ¬p , 则 ¬q 逆否命题: 若 ¬q , 则 ¬p	若 p d 互 否 逆否f	五 为 页 为 页	若 逆 否 逆	产命题 q 则
		充分条件	$n \Rightarrow a$, $n \not = a$ 的充分条件	生 差	告命题 n 对应集合	· A . 命颙	[a 对应集合 R . 则
语	充要				=		=
	条件		<u> </u>		A 4 M 4 11 3	- · · · ·	7 4 1/4 == 2 0
			│		a 均为假时才为	 叚。	类比集合的并
	逻辑		1 1 1 1				类比集合的交
	集合 常用逻辑用	集合 常用逻辑用语 概 关 运 运 愈	# A={a	概念 $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	概念 $A = \{a_1, a_2, a_3 \text{K} \ a_n\}$ 元素 元素 元素 $A = \{a_1, a_2, a_3 \text{K} \ a_n\}$ 一组对象的全体. $x \in A, x \notin A$ $A = \{a_1, a_2, a_3 \text{K} \ a_n\}$ 一组对象的全体. $x \in A, x \notin A$ $A = \{a_1, a_2, a_3 \text{K} \ a_n\}$ 一组对象的全体. $x \in A, x \notin A$ $A = \{a_1, a_2, a_3 \text{K} \ a_n\}$ 书集 $A = \{a_1, a_2, a_3 \text{K} \ a_n\}$ 书集 $A = \{a_1, a_2, a_3 \text{K} \ a_n\}$ 书单 $A = \{a_1, a_2, a_3 \text{K} \ a_n\}$ 书字 $A = \{a_1, a_2, a_3 \text{K} \ a$	概念 $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	概念 $A = \{a_1, a_2, a_3 \in A_n\} \\ -\text{组对象的全体} x \in A, x \notin A \\ \hline 2 + 4 \\ \hline 2 $

命题的否定与否命题

连接词

量词

*1.命题 $p \Rightarrow q$ 的否定与它的否命题的区别:

且命题

非命题

全称量词

存在量词

命题 $p \Rightarrow q$ 的否定是 $p \Rightarrow \neg q$, 否命题是 $\neg p \Rightarrow \neg q$.

命题"p或q"的否定是" $\neg p$ 且 $\neg q$ ", "p且q"的否定是" $\neg p$ 或 $\neg q$ ".

*2.常考模式:

全称命题 p: $\forall x \in M, p(x)$; 全称命题 p 的否定 \neg p: $\exists x \in M, \neg p(x)$.

特称命题 p 的否定 \neg p: $\forall x \in M, \neg p(x)$. 特称命题 p: $\exists x \in M, p(x)$;

【自我反思】

1. 你知道集合中的元素互异性吗?研究集合一定要首先看清什么?研究集合交、并、补运算时,你注意到两种极 端情况了吗?你会用补集的思想以及借助于数轴或韦恩图进行解决有关问题吗?

 $p \wedge q$, p,q 均为真时才为真, p,q 有一为假即为假。

∀,含全称量词的命题叫全称命题,其否定为特称命题。

∃,含存在量词的命题叫特称命题,其否定为全称命题。

 $\neg p$ 和 p 为一真一假两个互为对立的命题。

类比集合的交

类比集合的补

2. 存在性命题和全称命题是什么?如何否定? 命题的否定和否命题一样吗?充分条件、必要条件和充要条件的 概念记住了吗?如何判断?反证法证题的三部曲你还记得吗?

 \underline{t} **a**: **如** "若 a 和 b 都是偶数,则 a+b 是偶数"的否命题是"若 a 和 b 不都是偶数,则 a+b 是奇数" 否定是"若 a 和 b 都是偶数,则 a+b 是奇数"

若x>2,则 $x\geq 2$;真命题

*2.复数与统计与统计案例 概率

	<u>~</u> ~	コーフロレー		73 196 —					
			虚数单位	规定: $i^2 = -1$; 实数可以与它进行四则运算,并且运算时质成立。 $i^{4k} = 1, i^{4k+1} = i, i^{4k+2} = -1, i^{4k+3} = -i(k \in \mathbb{Z})$ 。	東有的加、乘运算律仍				
	← vet.	₩ &		形如 $a + bi(a, b \in \mathbb{R})$ 的数叫做复数, a 叫做复数的实部,					
		概念	复数	b 叫做复数的虚部。 $b \neq 0$ 时叫虚数、 $a = 0, b \neq 0$ 时叫纯虚	数。				
			复数相等	$a+bi=c+di(a,b,c,d \in \mathbf{R}) \Leftrightarrow a=c,b=d$					
	复数 的概		共轭复数	实部相等,虚部互为相反数。即 $z = a + bi$,则 $z = a - bi$ 。					
	念和		加减法	$(a+bi)\pm(c+di)=(a\pm c)+(b\pm d)i$, $(a,b,c,d \in \mathbf{R})$.					
	运算	运算	乘法	$(a+bi)(c+di) = (ac-bd) + (bc+ad)i$, $(a,b,c,d \in \mathbb{R})$)				
		291	除法	$(a+bi) \div (c+di) = \frac{ac+bd}{c^2+d^2} + \frac{bc-da}{c^2+d^2} i(c+di \neq 0, a, b, c)$	$,d\in\mathbf{R})$				
		几何	复数 z = a +	$bi \leftarrow \stackrel{eta b}{\longrightarrow}$ 复平面内的点 $Z(a,b) \leftarrow \stackrel{eta b}{\longrightarrow}$ 向量 OZ					
		意义	向量 OZ 的	Z 的模叫做复数的模, $ z = \sqrt{a^2 + b^2}$					
			*1.运算律:	(1) $z^m \cdot z^n = z^{m+n}$; (2) $(z^m)^n = z^{mn}$; (3) $(z_1 \cdot z_2)^m = z_1^m z_2^m$	$(m,n\in N)$.				
复				意复数、向量、导数、三角等运算率的适用范围. $ z_1 z_1 z_2 = z_1 z_2 ; \qquad (2) \frac{z_1}{z_2} = \frac{ z_1 }{ z_2 }; \qquad (3) z^n = z ^n.$					
数	主要	复数运算							
	性质	231	*3.重要结论	$z_1 \cdot z_2 = z ^2 = \overline{z} ^2;$ $(1 \pm i)^2 = \pm 2i;$ $\frac{1-i}{1+i} = -i,$	$\frac{1+i}{1-i}=i ;$				
				i 性质: T=4; $i^{4n+1} = i, i^{4n+2} = -1, i^{4n+3} = -i, i^{4n} = 1.$					
		mate to a	简单抽样	从总体中逐个抽取且不放回抽取样本的方法。					
		随机 抽样	分层抽样	将总体分层,按照比例从各层中独立抽取样本的方法。	等概率抽样。				
统 计		7四1十	系统抽样	将总体均匀分段,每段抽取一个样本的方法。					
与	/ ₆₂		众数	样本数据中出现次数最多的数据。	,				
统	统 计	[中位数	从小到大排序后,中间的数或者中间两数的平均数。					
计 案 例	VI	样本 估计 总体	平均数	x_1, x_2, L, x_n 的平均数是 $x = \frac{1}{n}(x_1 + x_2 + L + x_n)$ 。	示准差 $s = \sqrt{\frac{1}{n}\sum_{i=1}^{n}(x_i - x_i)^2}$				
ניער		平函	方差	x_1, x_2, L, x_n 的平均数为 \bar{x} , $s^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2$ 。	, ,				
		وادر موشو	如果随机事件	$+ A \times a \times a \times b \times b \times a \times b \times b \times b \times b \times b$	可以将发生的频率 $\frac{m}{n}$				
		定义	作为事件 A 为	文生的概率的近似值,即 $P(A) pprox rac{m}{n}$ 。					
	概	事件	互斥事件	事件 A 和事件 B 在任何一次实验中不会同时发生					
	率	关系	对立事件	事件 A 和事件 B ,在任何一次实验中有且只有一个发生。	 类比集合关系。				
		性质	基本性质	$0 \le P(A) \le 1$, $P(\emptyset) = 0$, $P(\Omega) = 1$.					
		74+1171 ⊢							
			互斥事件	事件 A, B 互斥,则 $P(A+B) = P(A) + P(B)$ 。					

	1		
	古典 概型	计算公式	$P(A) = \frac{m}{n}$, n 基本事件的个数、 m 事件 A 所包含的基本事件个数。
	1	特征	基本事件个数的无限性每个基本事件发生的等可能性。
	几何 概型	计算公式	P(A) = ——构成事件A的测度
	194.4至		试验全部结果所构成的测度

3.平面向量

• •	, ,,,,	~1 =							
		卢]量	既有大小又有方向的量,表示向量的有向线段的长度叫做	该向量的模。				
		0 向量		长度为0,方向任意的向量。【0与任一非零向量共线】					
		平行向量		方向相同或者相反的两个非零向量叫做平行向量,也叫共	线向量。				
	重	向量	Ł的模	$\begin{vmatrix} \mathbf{r} \\ a = \sqrt{x^2 + y^2}, \ a^2 = a ^2 = x^2 + y^2 \end{vmatrix}$					
	要	两点间	可的距离	若 $A(x_1, y_1), B(x_2, y_2)$,则 $ AB = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$					
	概念			起点放在一点的两向量所成的角,范围是 $[0,\pi]$ 。 a,b	的夹角记为 $< a,b >$ 。				
	逐	向量	上夹角	$\langle a,b \rangle$ 锐角 $\Leftrightarrow a \cdot b > 0$, a,b 不同向; $\langle a,b \rangle$ 为直角 $\Leftrightarrow a \cdot b = 0$; 向量的夹角带有方向性:向量是有方向的,向量间的夹角表示两个	$\langle a,b \rangle$ 钝角 $\Leftrightarrow a \cdot b < 0$, a,b 不反向.				
		找	影	$\langle a,b \rangle = \theta$, $b \cos \theta$ 叫做 $b \in a$ 方向上的投影。【注意:	投影是数量】				
	重	 ***********************************	定理	e_1, e_2 不共线,存在唯一的实数对 (λ, μ) ,使 $a = \lambda e_1 + \mu e_2$	2 。若 e_1, e_2 为 x, y 轴上的单位正				
	要	李 4	足垤	交向量, (λ,μ) 就是向量 a 的坐标。					
	法			一般表示	坐标表示				
	则定	共组	条件	a/b ($b \neq 0$ 共线 \Leftrightarrow 存在唯一实数 λ , $a = \lambda b$	$\Leftrightarrow x_1y_2 - y_1x_2 = 0$				
平	理	垂直	 [条件	$a\perp b \Leftrightarrow a\mathbf{d}b=0$.	$x_1 y_1 + x_2 y_2 = 0.$				
面				设 $AB = a, BC = b$, 那 么 向 量 AC 叫 做 $a = b$ 的 和 , 即					
向		加法运算	法则	a+b=AB+BC=AC; 向量加法的三角形法则可推广至多个向量相加: $AB+BC+CD+L+PQ+QR=AR$,但这时必须"首尾相	$a+b=(x_1+x_2,y_1+y_2)$ •				
量				加: $AB + BC + CD + L + PQ + QR = AR$,但这时必须"首尾相连"。	3 (]				
			算律	交換律 $a+b=b+a$, 结合律 $(a+b)+c=a+(b+c)$					
		减法 运算	减法。		用 "三角形法则": 设 $AB = a$, $AC = b$, 那么 $a - b$	1 1			
			Y -J-	=AB-AC=CA,由滅向量的终点指向被滅向量的终点。	$a-b=(x_1-x_2,y_1-y_2)$				
				注意: 此处滅向量与被滅向量的起点相同。					
			概念	$\lambda \cdot a$ 为向量, $\lambda > 0$ 与 a 方向相同,	$\lambda a = (\lambda x, \lambda y)$				
	各 种	数乘		$\lambda < 0$ 与 a 方向相反, $\left \lambda \stackrel{\cdot}{a}\right = \left \lambda\right \left \stackrel{\cdot}{a}\right $ 。					
	运	运算	运算	运算	运算	运算	增油	分配律 $\lambda(\mu \vec{a}) = (\lambda \mu)\vec{a}$, $(\lambda + \mu)\vec{a} = \lambda \vec{a} + \mu \vec{a}$,	上粉乘运管方同类的从标志三
	算		算律	分配律 $\lambda(\vec{a} + \vec{b}) = \lambda \vec{a} + \lambda \vec{b}$	与数乘运算有同样的坐标表示。				
			概念	$a\mathbf{g}b = \begin{vmatrix} a \\ b \end{vmatrix} \cos \langle a, b \rangle$	$a\mathbf{g} b = x_1 x_2 + y_1 y_2 \circ$				
		数量 积运	主要性质	$\begin{vmatrix} \mathbf{r} & \mathbf{r} \\ a\mathbf{g}a = \begin{vmatrix} \mathbf{r} \\ a \end{vmatrix}^2, \mathbf{a} \cdot \mathbf{b} \leq \mathbf{a} \mathbf{b} $	$ a = \sqrt{x^2 + y^2}, a = a ^2 = x^2 + y^2$				
		算	算律	$a\mathbf{g} = b\mathbf{g} a$, 分配律 $(a+b)\mathbf{g} = a\mathbf{g} + b\mathbf{g}$, $(\lambda a)\mathbf{g}$	$b = ag(\lambda b) = \lambda(agb)$.				
	1			向量运算和实数运算有类似的地方也有区别					
		算律		·向量等式,可以移项,两边平方、两边同乘以一个实数,两边同时取 除以一个向量,即两边不能约去一个向量, <mark>切记两向量不能相除(相约</mark>					

几何表示法 用带箭头的有向线段表示,如 AB ,注意起点在前,终点在后;

			尚中数字考則凹归基础知识必备
	向量	符号表示法	用一个小写的英文字母来表示,如 a , b , c 等;
	的表示方法	坐标表示法	在平面内建立直角坐标系,以与 x 轴、 y 轴方向相同的两个单位向量 $\overset{\cdot}{i}$, $\overset{\cdot}{j}$ 为基底,则平面内的任一向量 $\overset{\cdot}{a}$ 可表示为 $\overset{\cdot}{a}=\overset{\cdot}{xi}+\overset{\cdot}{yj}=(x,y)$,称 (x,y) 为向量 $\overset{\cdot}{a}$ 的坐标, $\overset{\cdot}{a}=(x,y)$ 叫做向量 $\overset{\cdot}{a}$ 的坐标表示。如果向量的起点在原点,那么向量的坐标与向量的终点坐标相同。
	重心	形的四个"心" : 三角形三条中线 ³ : 三角形三内角的 ⁵	
*1	不竺	式 线性抑制) il

*4.	不等式	、线性规划				
		$b > c \Rightarrow a > c$	两个实数的顺序关系:			
	a > b,	$c > 0 \Rightarrow ac > bc$; $a > b$, $c < 0 \Rightarrow ac < bc$;	$a > b \Leftrightarrow a - b > 0$			
同	l	$c > d \Rightarrow a + c > b + d$	$a < b \Leftrightarrow a - b < 0$			
向	a > b	$> 0, c > d > 0 \Rightarrow ac > bd$				
不						
等式			TEL POLICE III I O I I I			
	a > b >	$0, n \in \mathbb{N}^*, n > 1 \Rightarrow a^n > b^n; \sqrt[n]{a} > \sqrt[n]{b}$	取倒数法则 $ab > 0$, $a > b \Leftrightarrow \frac{1}{a} < \frac{1}{b}$			
	u > 0 >	0, n=11, n>1-2 u > 0, yu > yb				
		① $x, y > 0$,由 $x + y \ge 2\sqrt{xy}$,若积 $xy = P$ (定值),则当 $x = 1$	y 时和 $x + y$ 有最小值 $2\sqrt{p}$;			
		② $x, y > 0$,由 $x + y \ge 2\sqrt{xy}$,若和 $x + y = S$ (定值),则当 x	·			
	最值	$(\mathcal{L}_{x,y}) = 0, \exists x + y = 2\sqrt{xy}, \exists x + y = 5 (\text{Let}), \forall y = x$	- y 足(N,y 内 取八直_s · 4			
	定理	【推广】:已知 $x, y \in R$,则有 $(x+y)^2 = (x-y)^2 + 2xy$	v.			
		(1) 若积 xy 是定值,则当 x - y 最大时, x + y 最				
		(2) 若和 $ x+y $ 是定值,则当 $ x-y $ 最大时, $ xy $ 最小,当 $ x-y $ 最小时, $ xy $ 最大				
		7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7				
基本		平方平均 \geqslant 算术平均 \geqslant 几何平均 \geqslant 调和平均 $ab \leqslant (\frac{a+b}{2})$	$\frac{(a,b)}{2} \le \frac{a^2 + b^2}{2} \ (a,b \in R, $ 当且仅当 $a = b$ 取"=")			
不	均值不					
等式	等式	$\frac{2}{\frac{1}{a+1}} = \frac{2ab}{a+b} \leqslant \sqrt{ab} \leqslant \frac{a+b}{2} \leqslant \sqrt{\frac{a^2+b^2}{2}} (\pm \pm $				
		a b				
	糖水的浓度		FI: $\frac{b}{a} < \frac{b+m}{a+m} (a > b > 0, m > 0)$.			
	11/2	a-m a $a+m$	<i>a a</i> + <i>m</i>			
	"1"	③已知 $a, x, b, y \in \mathbb{R}^+$,若 $ax + by = 1$,则有: $\frac{1}{x} + \frac{1}{y} = (ax + by)$	$(1 + 1) = a + b + \frac{by}{a} + \frac{ax}{a} \ge a + b + 2\sqrt{ab} = (\sqrt{a} + \sqrt{b})^2$			
	的	x y	$\begin{pmatrix} x & y & x & y \end{pmatrix}$			
	代换	4 $a, x, b, y \in \mathbb{R}^+$,若 $\frac{a}{x} + \frac{b}{y} = 1$ 则有: $x + y = (x + y)(\frac{ay}{x} + \frac{bx}{y}) = a$	$+b+2\sqrt{ab}=(\sqrt{a}+\sqrt{b})^2$			
		, ,				
	}	当 $A>0$ 时,若 $Ax+By+C>0$ 表示直线 l 的右边, $Ax+By+C$	C < 0 表示直线 / 的左边.			
	 平面	当 $B > 0$ 时,若 $Ax + By + C > 0$ 表示直线 l 的上方, $Ax + By + C$	C < 0 表示直线 l 的下方.			
线	区域					
性	-	设曲线 $C: (A_1x + B_1y + C_1)(A_2x + B_2y + C_2) = 0$ ($A_1A_2B_1B_2 \neq 0$),	$\mathbb{Q}(Ax+By+C)(Ax+By+C)>0$ 或 < 0 所表示的平			
规		面区域: 两直线 $A_1x + B_1y + C_1 = 0$ 和 $A_2x + B_2y + C_2 = 0$ 所成对项角区:	. 1 1 1 2 2 2			
划						
1	,	high high plane = high plan	圆、 $ x+a + y+b =m$ 等),则 $f(x_0,y_0)>0$,			
	1	$oldsymbol{x}$ 你点在曲线外部;若 $f(x,y)$ 为开放曲线(抛物线、双曲线等),则	$f(x_0, y_0) > 0$,称点亦在曲线"外部"			
1	1 1					

	最值	①当 B > 0 时,将直线 l 向	z=0,目标函数 $z=Ax+By$. 上平移,则 z 的值越来越大;直线 l 向下平移,则 z 的值越来越小; 上平移,则 z 的值越来越小;直线 l 向下平移,则 z 的值越来越大;
	几何意义	z = ax + by	$ \ddot{\mathbf{z}}_{b} > 0 $,直线在 y 轴上的截距越大,z 越大,若 $b < 0$,直线在 y 轴上的截距越大,z 越小.
		$\frac{y-m}{x-n} \left(\frac{\sin x - m}{\cos x - n}\right)$	表示过两点 (x,y) , (n,m) 的直线的斜率,特别 $\frac{y}{x}$ 表示过原点和 $\left(n,m\right)$ 的直线的斜率
		$t = (x-m)^2 + (y-n)^2$	$t = (x - m)^2 + (y - n)^2$ 表示区域内的点到 (m,n) 的距离的平方

*5.函数、基本初等函数 | 的概念、图像与性质

	函数的 定 概念 如		函数用 $f(x)$ 来表示:即 x 按照对应法则 f 对应的函数值为 $f(x)$. 函数有解析式和图像两种具体的表示形式。 定义域 $A: x$ 取值范围组成集合。 值域 $B: y$ 取值范围组成集合。对应法则 $f: y$ 与 x 对应关系。 如:函数图像与 x 轴的垂线至多有一个公共点,但与 y 轴垂线的公共点可能没有,也可能有任意个.
函数概念	定义域		(1) 具体函数: 即有明确解析式的函数,定义域的考查有两种形式: 使函数解析式有意义 (如:分母 $\neq 0$;偶次根式被开方数非负;零指数幂底数 $\neq 0$;实际问题有意义;对数真数 >0 ,底数 >0 且 $\neq 1$;如 $\lg x < 1$ 的解集: $0 < x < 10$; $y = \ln x$ 单调增区间 $(0 + \infty)$;如:不等式 $\lg x < 1$ 的解集
心 及 其	炒 :	型	若 $f(x)$ 的定义域为 $[a,b]$, 其复合函数 $f[g(x)]$ 的定义域可由不等式 $a \le g(x) \le b$ 解出;若 $f[g(x)]$ 的定义域为 $[a,b]$, 求 $f(t)$ 的定义域,相当于 $x \in [a,b]$ 时, 求 $t = g(x)$ 的值域;
表			如若函数 $f(x^2+1)$ 的定义域为 $[-2,1)$,则 $f(x)$ 定义域为 (答: [1,5])
示			数轴上的一段数组成的集合可以用区间表示,区间分为开区间和闭区间,开区间用小括号表示,是大于或小于的意思;
	区	间	闭区间用中括号表示,是大于等于或小于等于的意思;
			(1) 区间是集合的另类表示方式,区间就是集合,具有集合的一般性质。
			(2) 它是无限集,连续的实数。 $\{x \mid 1 < x < 2$ 或 $x = -4\}$ 表示成(1,2) $U\{-4\}$,不能写成 $(1,2)$ 且 $x = -4$ 。
			如果 $f(-x) = f(x)$,则 $f(x)$ 为偶函数;如果 $f(-x) = -f(x)$,则 $f(x)$ 为奇函数。这两个式子有意义的前提条件是:定义域关于原点对称。确定奇偶性方法有定义法、图像法等;
	奇偶性	定义	$ x^2-2 -2$
			(2)奇函数在对称的单调区间内有相同的单调性,偶函数在对称的单调区间内有相反单调性;(3)若 $f(x)$ 是偶函数,那么 $f(x) = f(-x) = f(x)$; 定义域含零的奇函数必过原点($f(0) = 0$);
		判断	定义法判断: (1)定义域是关于原点对称的; (2) 计算 $f(x) \pm f(-x) = 0$ 或 $\frac{f(-x)}{f(x)} = \pm 1(f(x) \neq 0)$;
			若函数 $f(x) = \frac{k-2^x}{1+k\cdot 2^x}$ (a 为常数) 在定义域上为奇函数,则 $k=\pm 1$
性质		利用	(1).利用公式: $f(-x)=-f(x)$, $f(-x)==f(x)$, 计算或求解析式; (2).利用复合函数奇偶性结论: $F(x)=f(x)g(x)$, 奇奇得偶,偶偶得偶,奇偶得奇; (3). $F(x)=f(x)+g(x)$, 当 $f(x)$ 为奇, $g(x)$ 为偶时,代入 $-x$ 得: $F(-x)=-f(x)+g(x)$,两式相加可以消去 $f(x)$,两式相减可以消去 $g(x)$,从而解决问题; (4) 奇偶函数图像的对称性
	周		对定义域内任意 x ,存在非零常数 T , $f(x+T)=f(x)$, T 为 $f(x)$ 周期 (1)若 $y=f(x)$ 对 $x\in R$ 时 $f(x+a)=f(x-a)$ 恒成立,则 $f(x)$ 的制势 $2\mid a\mid$;
	期		(2)若 $y = f(x)$ 是偶函数, 其图像又关于直线 $x = a$ 对称, 则 $f(x)$ 的周期为 $2 \mid a \mid$;
	性		(3) $f(x+a) = -f(x)$, $f(x+a) = -\frac{1}{f(x)}$ of $f(x+a)f(x) = k$ of $f(x+a) + f(x) = k$ $f(x+a) + f(x) = $
	单	定义	定义域内一区间 I , $x_1, x_2 \in I$, $x_1 < x_2$,增 $x_1 < x_2 \Rightarrow f(x_1) < f(x_2)$; 减 $x_1 < x_2 \Rightarrow f(x_1) < f(x_2)$
	调 性	求单 区间	调 定义法、导数法、图像法和特值法(用于小题)等(提醒:求单调区间时注意定义域) 导数法: i 求定义域: ii 求 $f'(x)$; iii $f'(x)>0$ 的解构成增区间;注意:区间表示。

	如: 函数 $y = \log_{\frac{1}{2}}(-x^2 + 2x)$ 的单调递增区间是($(1,2)$); 函数 $y = x - \frac{1}{x}$ 单调增区间是($(-\infty,0)$ 和 $(0,+\infty)$)
证明	定义法、导数法。判断单调性:小题首选复合函数法,其次求导数; 大题首选求导数,其次用定义。
利用	(1).求值域:利用单调性画出图像趋势,定区间,断。 (2).比较函数值的大小: 画图看(3)解不等式: 增 $x_1 > x_2 \Rightarrow f(x_1) > f(x_2)$ 或 $f(x_1) > f(x_2) \Rightarrow x_1 > x_2$; 减 $x_1 > x_2 \Rightarrow f(x_1) < f(x_2)$ 或 $f(x_1) > f(x_2) \Rightarrow x_1 < x_2$; 利用常规函数单调性结论,根据单调性求系数。 $\log_a \frac{3}{5} < 1$,则 a 范围是 $\frac{a > 1 \text{ 或} 0 < a < \frac{3}{5}}{5}$; 已知 $f(x) = \log_a x(a > 0, a \neq 1)$ 为 R 上增,则 $f(x - 1) < 0$ 的实数 x 的取值范围。 $(0,1)$ U $(1,2)$
复合函数	由 "同增异减" 判定: ①分解为基本函数: 内函数 $u=g(x)$ 与外函数 $y=f(u)$; ②分别研究内、外函数在各自定义域内的单调性 ③根据"同性则增,异性则减"来判断原函数在其定义域内单调性. 已知复合函数单调性,求字母范围: i 分解出内外层函数; ii 研究内外层函数的单调性的关系; iii 兼顾函数的定义域; 如: 若 $y=\log_a(2-ax)$ 在 $[0,1]$ 上是 x 的减函数,则 a 的取值范围是(1,2)

*6.函数、基本初等函数 | 的图像与性质

求函数解	待定系数法 基本步骤	①确定所求问题含有待定系数的解析式;二次函数解析式的三种形式: 一 般 式 : $f(x) = ax^2 + bx + c(a \neq 0)$; 顶 点 式 : $f(x) = a(x - h)^2 + k(a \neq 0)$; 零 点 式 : $f(x) = a(x - x_1)(x - x_2)(a \neq 0)$. ②根据恒等的条件,列出一组含特定系数的方程; ③解方程组或者消去待定系数,从而使问题得到解决。 如一元二次不等式 $f(x) < x - 1$ 解集是 $(-1,2)$,可设 $f(x) - x + 1 = a(x + 1)(x - 2)$
析式	配凑法	若 $f(x-\frac{1}{x})=x^2+\frac{1}{x^2}$,则函数 $f(x-1)=$ (答: x^2-2x+3)
的常用	坐标转移	函数 $y = f(x)$ 关于函数 $y = \ln \sqrt{x} + 1$ 图形关于直线 $y = x$ 对称,则 $f(x) = \underline{\hspace{1cm}} e^{2x-2}$ 函数 $y = f(x)$ 与的图像关于原点成中心对称; $y = -f(-x)$
方法	方程的思想	对已知等式进行赋值,从而得到关于 $f(x)$ 及另外一个函数的方程组; 函数 $f(x)$ 是一个偶函数, $g(x)$ 是一个奇函数,且 $f(x)+g(x)=\frac{1}{x-1}$,则 $f(x)$ 等于 $\frac{1}{x^2-1}$; 若函数 $f(x),g(x)$ 分别是 $\mathbf R$ 上的奇函数、偶函数,且满足 $f(x)-g(x)=e^x$,则有 $f(x)=\underline{\qquad}$ $\frac{e^x-e^{-x}}{2}$
图象几种常见变换	对称 变换	①函数 $y = f(x)$ 与 $y = -f(-x)$ 的图像关于原点成中心对称 ②函数 $y = f(x)$ 与 $y = f(-x)$ 图像关于直线 $x = 0$ (y 轴) 对称; ③函数 $y = f(x)$ 对 $x \in R$, $f(a + x) = f(a - x)$ 或 $f(x) = f(2a - x)$ 恒成立,图像关于 $x = a$ 对称; ④者 $y = f(x)$ 对 $x \in R$ 时, $f(a + x) = f(b - x)$ 恒成立,则 $y = f(x)$ 图像关于 $x = \frac{a + b}{2}$ 对称; 函数 $y = f(a + x)$, $y = f(b - x)$ 的图像关于直线 $x = \frac{b - a}{2}$ 对称(由 $a + x = b - x$ 确定); ⑤函数 $y = f(ax)$ ($a > 0$) 的图象是把函数 $y = f(x)$ 的图象沿 x 轴伸缩为原来的 $\frac{1}{a}$ 得到的。 如若函数 $y = f(2x - 1)$ 是偶函数,则函数 $y = f(2x)$ 的对称轴方程是
一	平移变换	左右平移——"左加右减"(针对 x 而言);上下平移——"上加下减"(针对 y 而言)
	翻折变换	$f(x) \to f(x) $; $f(x) \to f(x)$. 注意翻折时机和翻折的本质: 如 $y = 2^{ x-3 }$ 由 $y = 2^{ x }$ 向右平移 3 单位
	配方法	二次函数(二次函数在给出区间上的最值有两类: 一是求闭区间 $[m,n]$ 上的最值; 二是求区间定(动),对称轴动(定)的最值问题。 求二次函数的最值问题,勿忘数形结合,注意"两看": 一看开口方向;二看对称轴与所给区间的相对位置关系), 如求函数 $y=x^2-2x+5, x\in[-1,2]$ 的值域(答: $[4,8]$);

	换元法	通过换元把一个较复杂的函					
		数变为简单易求值域的函数,其函数特征是函数解析式含有根式或三角函数公式模型,如 $y=2x+1+\sqrt{x-1}$ 的值域为					
		(答: $(3,+\infty)$) (令 $\sqrt{x-1}=t$, $t\geq 0$ 。运用换元法时,要特别要注意新元 t 的范围);					
求	有界性	利用已学过函数的有界性,确定值域,最常用的就是三角函数的有界性,如 $y = \frac{2\sin\theta - 1}{1 + \sin\theta}$ $(-\infty, \frac{1}{2}]$					
数 值							
域 (最	₩. IV. 6t. 人	函数解析式具有明显的某种几何意义,如两点的距离、直线斜率、等等,如已知点 $P(x,y)$ 在圆 $x^2+y^2=1$ 上,求 $\frac{y}{x+2}$					
值) 的	数形结合	的取值范围(答: $[-\frac{\sqrt{3}}{3}, \frac{\sqrt{3}}{3}]$); 求 $y = \sqrt{(x-2)^2} + \sqrt{(x+8)^2}$ 的值域(答: $[10, +\infty)$);					
方法	判别式						
	不做 —	利用基本不等式 $a+b\geq 2\sqrt{ab}$ $(a,b\in R^+)$ 求函数的最值,其题型特征解析式是和式时要求积为定值,解析式是积时要					
	不等式	求和为定值,不过有时须要用到拆项、添项和两边平方等技巧。					
	日米沙	一般适用于高次多项式函数,如求函数 $f(x) = 2x^3 + 4x^2 - 40x$, $x \in [-3,3]$ 的最小值。(答: -48)					
	导数法 	提醒:求函数的定义域、值域时,你按要求写成集合包括区间形式了吗?					

*7. 函数与方程、函数模型及其应用

	到数一刀住、图		7 1// 14		
		定义域 R 值域	દ (0,+∞)		
	指数函数	0 < a < 1	$(-\infty, +\infty)$ 单调递减, $x < 0$ 时 $y < 1$, $x > 0$ 时 $0 < y < 1$	$\begin{bmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix}^x & \begin{pmatrix} 1 \\ 3 \end{pmatrix}^x & 2^x \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & $	
	$y = a^{x}(a > 0, \mathbb{H}.a \neq 1)$	a > 1	$(-\infty, +\infty)$ 单 调 递 增 , $x < 0$ 时 $0 < y < 1$, $x > 0$ 时 $y > 1$	$\frac{2}{3^x}$ $\frac{1}{0}$ $\frac{1}{(\frac{1}{3})^x}$ $\frac{1}{x}$	
		函数的定义域	为 (0,+∞)		
	对数函数: 函数 $y = \log_a x(a > 0,$	函数的值域为	y R; 函数 $y = (\frac{1}{2})^{1-x}$ 的值域是 (0, + ∞);	$\log_{\frac{1}{3}} x$ $\log_{2} x$ $\log_{3} x$	
基本 初等 函数	且 $a \neq 1$); $y = (a^2 - 3a + 3) \cdot a^x$ 是 指数函数,则有	0 < a < 1	在 $(0,+\infty)$ 单调递减, $0 < x < 1$ 时 $y > 0$, $x > 1$ 时 $y < 0$	$\log_3 x \sqrt{\frac{\log_{\frac{1}{3}} x}{\log_2 x}}$	
I I	(<i>a</i> = 2.)	<i>a</i> > 1	$ ag{equiv}$ 在 $(0,+\infty)$ 单调递增, $0 < x < 1$ 时 $y < 0$, $x > 1$ 时 $y > 0$		
		$\alpha > 0$	幂函数的图象通过原点,并且在区间 $[0,+\infty)$ 上是增函数	$y = x^3 / y = x^2$ $y = x$	
		$\alpha > 1$	幂函数的图象下凸	$y = x^{\frac{1}{2}}$	
	幂函数	$0 < \alpha < 1$	幂函数的图象上凸	$y = x^3$	
	一般地,形如 $y=x^{\alpha}$ $(a \in R)$ 的函数称为幂函数,其中 α 为常数.	α < 0	幂函数的图象在区间 $(0,+\infty)$ 上是减函数. 在第一象限内,当 x 从右边趋向原点时,图象在 y 轴右方无限地逼近 y 轴正半轴,当 x 趋于 $+\infty$ 时,图象在 x 轴上方无限地逼近 x 轴正半轴.	$y = x^{-1}$ $y = x^{-2}$ $y = x^{-\frac{1}{2}}$ $y = x^{-\frac{1}{2}}$ $y = x^{-1}$ $y = x^{-2}$	

_	F4 1 24 4 14 12 12 12 12 12 12 12 12 12 12 12 12 12							
指数 函数 对数 函数	对数与对数性质: (1) $\log_a b = \log_{a^n} b^n \ (a > 0, a \neq 1, b > 0, n \neq 0)$; (2)对数恒等式 $a^{\log_a N} = N(a > 0, a \neq 1, N > 0)$ (3) $\log_a (M \cdot N) = \log_a M + \log_a N$; $\log_a \frac{M}{N} = \log_a M - \log_a N$; $\log_a M^n = n \log_a M$; $\log_a \sqrt[n]{M} = \frac{1}{n} \log_a M$; (4)对数换底公式 $\log_a N = \frac{\log_b N}{\log_b a} \ (a > 0, a \neq 1, b > 0, b \neq 1)$							
函数	概念		函数 $y = f(x)$ 的零点就是方程 $f(x) = 0$ 实数根,亦即函数 $y = f(x)$ 的图象与 x 轴交点的横坐标。即:方程 $f(x) = 0$ 有实数根 \Leftrightarrow 函数 $y = f(x)$ 的图象与 x 轴有交点 \Leftrightarrow 函数 $y = f(x)$ 有零点;如:函数 $f(x) = x - \lg x $ 在定义域上零点个数为 1					
零点	存在 定理	图象在[图象在 $[a,b]$ 上连续不断,若 $f(a)f(b)<0$,则 $y=f(x)$ 在 (a,b) 内存在零点。					
	方法		对于在区间 $[a,b]$ 上连续不断,且满足 $f(a) \bullet f(b) < 0$ 的函数 $y = f(x)$,通过不断地把函数 $f(x)$ 的零点所在区间一分为二,使区间两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.					
		第一步	确定区间 $[a,b]$,验证 $f(a)\cdot f(b)<0$,给定精确度 ε 。					
_		第二步	求区间 $[a,b]$ 的中点 c ;					
分	步骤		计算 $f(c)$: (1) 若 $f(c)$ =0,则 c 就是函数的零点;(2) 若 $f(a)\cdot f(c)$ <0,则令 $b=c$					
法		第三步	(此时零点 $x_0 \in (a,c)$); (3) 若 $f(c) \cdot f(b) < 0$,则令 $a = c$ (此时零点 $x_0 \in (c,b)$). (4)					
			判断是否达到精确度 ε :即若 $ a-b <\varepsilon$,则得到零点近似值 a (或 b); 否则重复 (2) \sim					
			(4). 2					
		函数 $f(x) = \ln(x-1) - \frac{2}{x}$ 的零点所在的大致区间是 <u>(0,1)</u> 或 $\underline{(1,2)}$ (画图 $\ln(x-1) = \frac{2}{x}$; 注意: $\underline{f'(x) > 0}$ 只能说明函数在						
	(-1,0),(0,+∞)分别增,不是在定义域内增,不能误认为零点只有一个(错))							

*8. 导数及其应用

导数及其应用	概念与几何意义	概念	$f(x)$ 在点 x_0 处的导数 $f'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$ 如当 $\Delta x \to 0$, $\frac{\sin(\frac{\pi}{3} + \Delta x) - \sin\frac{\pi}{3}}{\Delta x} \to \underline{\qquad}$.
		念 几何 意义 可 意	(1) "在"点 (x_1, y_1) 处的切线: i 斜率= $k = f'(x_1)$ ii 切线 $y - y_1 = f'(x_1)(x - x_1)$ 曲线 $y = f(x)$ 在点 $F(x_0, f(x_0))$ 处的切线的斜率是 $f'(x_0)$,相应地切线的方程是 $y - y_0 = f'(x_0)(x - x_0)$ 。
			(2) "过"点 (x_1,y_1) 在曲线上 $y_0=f(x_0)$ 切线: i 设切点 (x_0,y_0) ; ii 求切线方程; iii 列方程组: 切点 (x_0,y_0) 在曲线上 $y_0=f(x_0)$; 切点在切线 $y-y_1=f'(x_0)(x-x_1)$ 上; iv 解方程组,得 x_0 ,求切线。 如 $f(x)=x^3-3x$,过 $P(2,-6)$ 作 $y=f(x)$ 的切线,求此切线的方程(答: $3x+y=0$ 或 $24x-y-54=0$)。 如经过原点且与曲线 $y=\frac{x+9}{x+5}$ 相切的方程是
			在求曲线的切线方程时,要注意区分所求切线是曲线上某点处的切线,还是过某点的切线: 曲线上某点处的切线只有一条,而过某点的切线不一定只有一条,即使此点在曲线上也不一定只有一条; 瞬时速度; V=s/(t) 表示即时速度。a=v/(t) 表示加速度。
			如一物体的运动方程是 $s=1-t+t^2$,其中 s 的单位是米, t 的单位是秒,那么物体在 $t=3$ 时的瞬时速度为 (5 米/秒)
	运算	基本 公式	(a) $C' = 0$; (b) $(x^n)' = nx^{n-1}$; (a) $(\sin x)' = \cos x$; (b) $(\cos x)' = -\sin x$; (c) $(\frac{1}{x})' = -\frac{1}{x^2}$; $(\ln x)' = \frac{1}{x}$

		(a) $(a^x)' = a^x \ln a$; (a) $(e^x)' = e^x$; (b) $(\log_a x)' = \frac{1}{x \ln a}$; (a) $(\ln x)' = \frac{1}{x}$.
	运算	$(u \pm v)' = u' \pm v'; (uv)' = u'v + uv'; (\frac{u}{v})' = \frac{u'v - uv'}{v^2};$ 复合函数求导法则 $y = [f(g(x))]' = f'(g(x))g'(x)$
	法则	如等比数列 $\{a_n\}$ 中, $a_1=2$, $a_8=4$,函数 $f(x)=x(x-a_1)(x-a_2)$ L $(x-a_8)$,则 $f'(0)=\underline{}2^{12}$
		解: $f'(x)=1\cdot[(x-a_1)(x-a_2)\perp(x-a_8)]+x\cdot[(x-a_1)(x-a_2)\perp(x-a_8)]$ 故 $f'(0)=a_1a_2a_3\perp a_8=(a_1a_8)^4=2^{12}$
		①若 f'(x) > 0 ,则 f(x) 为增函数;若 f'(x) < 0 ,则 f(x) 为减函数;
		若 $f'(x)$ 的符号不确定,则 $f(x)$ 不是单调函数。
		②若函数 $y = f(x)$ 在区间 (a,b) 上单调递增,则 $f'(x) \ge 0$,反之等号不成立;若函数 $y = f(x)$ 在区间 (a,b)
		上单调递减,则 $f'(x) \le 0$,反之等号不成立
	函数的	如: 已知 $f(x)$ 为减函数求字母取值范围,那么不等式 $f'(x) \le 0$ 恒成立。如: 设 $a > 0$ 函数 $f(x) = x^3 - ax$ 在 $[1, +\infty)$
	单调性	上单调函数,则实数 a 的取值范围 (答: $0 < a \le 3$);
		已知函数 $f(x) = x^2 + \frac{2}{x} + a \ln x (x > 0)$,若 $f(x)$ 在[1,+ ∞] 上单调递增,求 a 的取值范围: $a \ge 0$;
研 究		如: 若函数 $y=-\frac{4}{3}x^3+bx$ 有三个单调区间,则 b 的取值范围是解析: $y'=-4x^2+b$,若 y' 值有正、有负,
函		则 $b>0$; 如: $f(x) = x + \frac{1}{x}$ 的单调减区间: 减区间 $(-1,0),(0,1)$, 你会画图吗?
数		求函数的单调区间的具体步骤是: ①确定 $f(x)$ 的定义域; ②计算导数 $f'(x)$; ③求出 $f'(x) = 0$ 的根;
性质		④用 $f'(x) = 0$ 的根将 $f(x)$ 的定义域分成若干个区间,列表考察这若干个区间内 $f'(x)$ 的符号,进而确定 $f(x)$ 的单调区间;
		1. 导数有哪些应用? (求斜率,判断单调性与求单调区间,求极值与最值,证明不等式),导数
	思考	的几何意义是什么?物理意义呢?知道是牛顿和莱布尼兹发明了微积分吗?
		2. 求导数的规则、公式你都记得吗?一共有多少个公式?有两个容易记错!导函数相同的两个
		原函数一定也相同吗?请举例说明。
		3. 导数的定义还记得吗? 它的几何意义和物理意义分别是什么? 利用导数可解决哪些问题? 具
		体步骤还记得吗?求切线,求极值,求单调区间,求最值,
		4导数求曲线的切线步骤是什么?你能区别"在"一点处的切线和"过"一点的切线吗?

*9. 导数及其应用

<u>J.</u>	· 于数	以火火	
导数及其应用	研究函数性质	极值	函数的极值定义: 设函数 $f(x)$ 在点 x_0 附近有定义,如果对 x_0 附近所有的点,都有 $f(x) < f(x_0)$,就说是 $f(x_0)$ 函数 $f(x)$ 的一个极大值。记作 $y_{\mathbb{R} \to \mathbb{R}} = f(x_0)$,如果对 x_0 附近所有的点,都有 $f(x) > f(x_0)$,就说是 $f(x_0)$ 函数 $f(x)$ 的一个极小值。记作 $y_{\mathbb{R} \to \mathbb{R}} = f(x_0)$ 。极大值和极小值统称为极值。极值是一个局部概念。由定义,极值只是某个点的函数值与它附近点的函数值比较是最大或最小。并不意味着它在函数的整个的定义域内最大或最小;函数的极值点一定出现在区间的内部,区间的端点不能成为极值点。 而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点

求函数 f(x) 的极值的步骤: (1) 确定函数的定义区间,求导数 f'(x): (2) 求方程 f'(x)=0 的根: (3) 列表(分区 讨论单调性和极值点): 用函数的导数为 0 的点, 顺次将函数的定义区间分成若干小开区间, 并列成表格,检查 f'(x)在方程根左右的值的符号,如果左正右负,那么 f(x) 在这个根处取得极大值,如果左负右正,那么 f(x) 在这个根处 取得极小值;如果左右不改变符号即都为正或都为负,则 f(x) 在这个根处无极值;

提醒:给出函数极大(小)值的条件,一定要既考虑 f'(xo)=0,又要考虑检验"左正右负"("左负右正")的转化, 否则条件没有用完,这一点一定要切记!

最

[a,b]上的连续函数一定存在最大值和最小值,最大值和区间端点值和区间内的极大值中的最大者,

最小值和区间端点和区间内的极小值中的最小者。

在闭区间 [a,b] 上连续的函数 f(x) 在 [a,b] 上必有最大值与最小值的步骤: i 讨论单调区间; ii。判断极值; ii 极值 与闭区间端点的函数值比较,最大的为最大值,最小的是最小值。如 函数 $y = 2x^3 - 3x^2 - 12x + 5$ 在[0,3]上的最大值、 最小值分别是____(答: 5; -15)

函数 F(x) = f(x) - g(x) 有零点或者方程 f(x) = g(x) 有解:

- ①(代数法)根据极值正负,画图观察函数 F(x) = f(x) g(x) 图像与 X 轴交点情况;
- ② (几何法) 作图要准确。方程 f(x) = g(x), 两个函数图像有交点。

念点

零点定理: 设函数 f(x) 在闭区间 [a,b] 上连续,且 $f(a) \cdot f(b) < 0$. 那么在开区间 (a,b) 内至少有函 数 f(x) 的一个零点,即至少有一点 ξ ($a < \xi < b$) 使 $f(\xi) = 0$.

如: (1) 若方程 $2ax^2 - x - 1 = 0$ 在 (0, 1) 内恰有一解,求实数 a 的取值范围。 a > 1;

反 思

- 1. 求极值,求单调区间,求最值?利用导数求函数单调区间时,一般由 $f'(x) \ge 0$ 解得的区间是单调 增区间;利用导数求函数最值的步骤你还清楚吗?最好是列表! "函数在某点取得极值"你会灵 活应用吗?不仅表示在该点的导函数值为零,而且导函数在该点两侧函数值的符号相异的。
- 2. 极值就是最值吗?极大值一定大于极小值吗? 你记得极值的定义原文吗吗?使 f/(x)=0的 x的值就是极值点吗?求最值的根本方法是什么(单调性法)?其它方法呢?(均值不等式法),求 最值的口诀你记得吗? (不在极点处,便在端点处);

对 f(x) = x3 + bx2 + cx + d, f(x) 大致图象是怎样?。

*10. 三角函数的图像与性质

角
函
数
的
图
象
与
性
乕

基

本

问

题

-

角概念的推广

- 1. α 终边与 θ 终边相同 $\Leftrightarrow \alpha = \theta + 2k\pi(k \in \mathbb{Z})$; 习惯上 x 轴正半轴作为角起始边,叫角的始边;
- 2. 象限角的概念:在直角坐标系中,使角的顶点与原点重合,角的始边与 x 轴的非负半轴重合,角的终边 在第几象限,就说这个角是第几象限的角。如果角的终边在坐标轴上,就认为这个角不属于任何象限。

	J.
	性质
	F
	עו
	<u>1</u>
	1
	E
	\$
	2
三	
角 形	
用	
#/	
10	
中	[3
.1.	12
的	9
HA	1
三	多多数
二角变	-
备	#X
7,14	*
本	
🔝	
换	
*/	1

正

切 函

数

的 图

和

性

质

		弧度制的定义	$ \alpha = l /_R$; \mathfrak{M}	长公式 l = θ r	; 扇形面积公式: $S_{\text{阑形}} = \frac{1}{2}l$	$r = \frac{1}{2} \theta r^2$; 1弧度(1rad) $\approx 57.3^{\circ}$.		
		任意角的三角 函数定义	角α中边上任	角 α 中边上任意一点 P 为 (x,y) ,设 $ OP =r$ 则: $\sin \alpha = \frac{y}{r}, \cos \alpha = \frac{x}{r}, \tan \alpha = \frac{y}{x}$				
		 同角三角 函数关系		注意: $\tan 15^\circ = \cot 75^\circ = 2 - \sqrt{3}$; $\tan 75^\circ = \cot 15^\circ = 2 + \sqrt{3}$ $\sin^2 \alpha + \cos^2 \alpha = 1$, $\frac{\sin \alpha}{\cos \alpha} = \tan \alpha$				
		诱导公式	$\cos \alpha$ $360^{\circ}\pm \alpha,180^{\circ}\pm \alpha$, $-\alpha$, $90^{\circ}\pm \alpha,270^{\circ}\pm \alpha$, "奇变偶不变,符号看象限".					
			周期	奇偶性	对称中心	对称轴		
	性质与图象							
		$y = A\sin(\omega x + \varphi)$	$T = \frac{2\pi}{ \omega }$	奇函数	$(\frac{k\pi-\varphi}{\omega},0)(k\in Z)$	$x = (k\pi + \frac{\pi}{2} - \varphi) /_{\mathcal{O}}(k \in \mathbb{Z})$		
_		$y = A\cos(\omega x + \varphi)$	$T = \frac{2\pi}{ \omega }$	偶函数	$(k\pi + \frac{\pi}{2} - \varphi /_{\omega}, 0)(k \in \mathbb{Z})$	$x = k\pi - \varphi / \omega(k \in Z)$		
三角		平移变换	上下平移	y = f(x) 图象	文平移 $ k $ 得 $y = f(x) + k$ 图	象, k > 0 向上, k < 0 向下。		
形中的三角变	图		左右平移	y = f(x) 图象	文平移 $ \varphi $ 得 $y = f(x + \varphi)$ 图	图象, $\varphi > 0$ 向左, $\varphi < 0$ 向右。		
	象变	伸缩变换	x 轴方向	$y = f(x)$ 图象各点把横坐标变为原来 ω 倍得 $y = f(\frac{1}{\omega}x)$ 的图象。				
	换		y 轴方向	y = f(x) 图象	A 各点纵坐标变为原来的 A	倍得 $y = Af(x)$ 的图象。		
		对极对外	中心对称	y = f(x) 图象	关于点 (a,b) 对称图象的	\mathbf{Z} 杯式是 $y = 2b - f(2a - x)$		
换		对称变换	轴对称	y = f(x) 图象	東关于直线 x = a 对称图象的	的解析式是 $y = f(2a - x)$ 。		

- (1) 定义域: $\{x \mid x \neq \frac{\pi}{2} + k\pi, k \in Z\}$ 。遇到有关正切函数问题时,你注意到正切函数的定义域了吗?
- (2) 值域是 R, 在上面定义域上无最大值也无最小值;
- (3) 周期性: 是周期函数且周期是 π ,它与直线y=a的两个相邻交点之间的距离是一个周期 π 。绝对值或 平方对三角函数周期性的影响:一般说来,某一周期函数解析式加绝对值或平方,其周期性是:弦减半、切 不变. 既为周期函数又是偶函数的函数自变量加绝对值,其周期性不变,其它不定。
- (4) 奇偶性与对称性: 是奇函数,对称中心是 $(\frac{k\pi}{2},0)$ $(k \in \mathbb{Z})$,特别提醒: 正(余)切型函数的对称中心有 两类:一类是图象与 x 轴的交点,另一类是渐近线与 x 轴的交点,但无对称轴,这是与正弦、余弦函数的不 同之处。
- (5) 单调性: 正切函数在开区间 $(-\frac{\pi}{2} + k\pi, \frac{\pi}{2} + k\pi)$ $(k \in \mathbb{Z})$ 内都是增函数。但要注意在整个定义域上不具 有单调性。

(3) $|\sin x| + |\cos x| \ge 1$; (4) $f(x) = \frac{\sin x}{x}$ 在 $(0, \pi)$ 上是减函数; (5) 若 $\sin x, \cos x \ge 1$, $\sin x, \cos x \ge 1$

三角恒等变换 *11.

三角恒等变换		正弦	和差角公式	倍角公式	$2 \tan \alpha$
	变换公式		$\sin(\alpha \pm \beta)$ $= \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$	$\sin 2\alpha = 2\sin \alpha \cos \alpha$	$\sin 2\alpha = \frac{2 \tan \alpha}{1 + \tan^2 \alpha}$ $\cos 2\alpha = \frac{1 - \tan^2 \alpha}{1 + \tan^2 \alpha}$
		余弦	$cos(\alpha \pm \beta)$ = $cos \alpha cos \beta m sin \alpha sin \beta$	$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha$ $= 2\cos^2 \alpha - 1 = 1 - 2\sin^2 \alpha$	$\sin^2 \alpha = \frac{1 - \cos 2\alpha}{2}$
		正切	$\tan (\alpha \pm \beta) = \frac{\tan \alpha \pm \tan \beta}{1 \operatorname{m} \tan \alpha \tan \beta}$	$\tan 2\alpha = \frac{2 \tan \alpha}{1 - \tan^2 \alpha}$	$\cos^2\alpha = \frac{1+\cos 2\alpha}{2}$
		三角变换	指角("配"与"凑")、函数名(切割化弦)、 的变换,其核心是"角的变换".	次数(降与升) 、系数(常值"1") 和 运算结构(和与积)

		化简技巧	角的拆变,公式变用,切割化弦,倍角降次,"1"的变幻,设元转化,引入辅角,平方消元等
		角的变换	已知角与特殊角的变换、已知角与目标角的变换、角与其倍角的变换、两角与其和差角的变换.
		角的'配"与 "凑"	掌握角的"和"、"差"、"倍"和"半"公式后,还应注意一些配凑变形技巧,如下: $2\alpha = \alpha + \alpha , \alpha = 2 \times \frac{\alpha}{2}; \alpha + \beta = 2 \cdot \frac{\alpha + \beta}{2}, \frac{\alpha + \beta}{2} = \left(\alpha - \frac{\beta}{2}\right) - \left(\frac{\alpha}{2} - \beta\right);$ $\alpha = (\alpha + \beta) - \beta = (\alpha - \beta) + \beta = \frac{\alpha + \beta}{2} + \frac{\alpha - \beta}{2} = \frac{\beta + \alpha}{2} - \frac{\beta - \alpha}{2};$ $2\alpha = 2[(\alpha + \beta) - \beta] = 2[(\alpha - \beta) + \beta] = (\alpha + \beta) + (\alpha - \beta) = (\beta + \alpha) - (\beta - \alpha);$ $2\alpha + \beta = (\alpha + \beta) + \alpha , 2\alpha - \beta = (\alpha - \beta) + \alpha ;$ $15^{\circ} = 45^{\circ} - 30^{\circ}, 75^{\circ} = 45^{\circ} + 30^{\circ}; \frac{\pi}{4} + \alpha = \frac{\pi}{2} - \left(\frac{\pi}{4} - \alpha\right)$ 等.
		"降幂"与 "升幂" (次的变	利用二倍角公式 $\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha = 2\cos^2 \alpha - 1 = 1 - 2\sin^2 \alpha$ 和二倍角公式的等价变形 $\sin^2 \alpha = \frac{1 - \cos 2\alpha}{2}$, $\cos^2 \alpha = \frac{1 + \sin 2\alpha}{2}$,可以进行"升"与"降"的变换,即"二次"与"一次"的
		化)	
	Ξ	切割化名 的变化	利用同角三角函数的基本关系,将不同名的三角函数化成同名的三角函数, 以便于解题.经常用的手段是"切化弦"和"弦化切".
	角变换	常值变换	常值 $\frac{1}{2}$, $\frac{\sqrt{2}}{2}$, $\frac{\sqrt{3}}{3}$, $\frac{\sqrt{3}}{2}$, 1 , $\sqrt{3}$ 可作特殊角的三角函数值来代换.此外,"1"常值
		引入辅助角	$a \sin \alpha + b \cos \alpha = \sqrt{a^2 + b^2} \left(\frac{a}{\sqrt{a^2 + b^2}} \sin \alpha + \frac{b}{\sqrt{a^2 + b^2}} \cos \alpha \right) = \sin(\alpha + \varphi)$, 期中 $\cos \varphi = \frac{a}{\sqrt{a^2 + b^2}}$, $\sin \varphi = \frac{b}{\sqrt{a^2 + b^2}}$, $\tan \varphi = \frac{b}{a}$. 特别的, $\sin A + \cos A = \sqrt{2} \sin(A + \frac{\pi}{4})$; $\sin x + \sqrt{3} \cos x = 2 \sin(x + \frac{\pi}{3})$, $\sqrt{3} \sin x + \cos x = 2 \sin(x + \frac{\pi}{6})$ 等. 若方程 $\sin x - \sqrt{3} \cos x = c$ 有实数解,则 c 的取值范围是(答: [-2,2]); 当函数 $y = 2 \cos x - 3 \sin x$ 取得最大值时, $\tan x$ 的值是(答: $-\frac{3}{2}$); 如果 $f(x) = \sin(x + \varphi) + 2 \cos(x + \varphi)$ 是奇函数,则 $\tan \varphi = $ (答: -2);
		特殊结构的构造	构造对偶式,可以回避复杂三角代换,化繁为简. 举例: $A = \sin^2 20^\circ + \cos^2 50^\circ + \sin 20^\circ \cos 50^\circ$, $B = \cos^2 20^\circ + \sin^2 50^\circ + \cos 20^\circ \sin 50^\circ$ 可以通过 $A + B = 2 + \sin 70^\circ$, $A - B = -\frac{1}{2} - \sin 70^\circ$ 两式和,作进一步化简.
	-	整体代换	举例: $\sin x + \cos x = m \Rightarrow 2\sin x \cos x = m^2 - 1 \sin(\alpha + \beta) = m$, $\sin(\alpha - \beta) = n$, 可求出 $\sin \alpha \cos \beta$, $\cos \alpha \sin \beta$ 整体值,作为代换之用.
*12	紐	! 二角形	

*12. 解三角形

解三角形	正弦	定理	$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} \circ$	射影定理: $a = b \cos C + c \cos B$	
	定理	变形	$a = 2R \sin A, b = 2R \sin B, c = 2R \sin C$ (R 外接圆半径)。	$b = a\cos C + c\cos A$	
		类型	三角形两边和一边对角、三角形两角与一边。	$c = a\cos B + b\cos A$	
	余弦	定理	$a^{2} = b^{2} + c^{2} - 2bc \cos A, b^{2} = a^{2} + c^{2} - 2ac \cos B, c^{2} = a^{2} + b^{2} - 2ac \cos B$	$ab\cos C$.	

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问: https://d.book118.com/576044042045010143