板块一

高考题型突破

题型突破 物质结构与性质综合 突破点 分子结构与性质

高考真题赏析 明考向

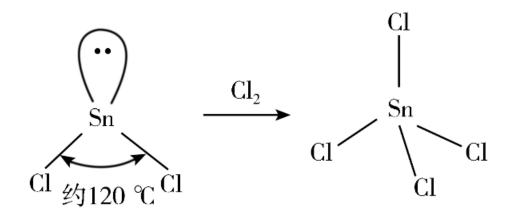
规律方法整合 建模型

强基培优精练 提能力

考前名校押题 练预测

高考 2025® 轮总复习

高考真题赏析 明考向


大π键、杂化轨道与结构的判断

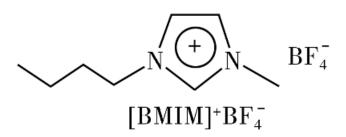
1. (2024·北京选考)SnCl,和SnCl,是锡的常见氯化物,SnCl,可被氧化

得到SnCl。。

- ①SnCl₂分子的<u>VSEPR</u>模型名称是_____。
- ②SnCl₄的Sn—Cl键是由锡的 轨道与氯的3p轨道

重叠形成σ键。

【答案】 ①平面三角形 ②sp3杂化


①SnCl₂ 中 Sn 的价层电子对数为 $2+\frac{1}{2}\times(4-2\times1)=3$, 故 SnCl2分子的 VSEPR 模型名称是平面三角形。②SnCl4中 Sn 的价层 电子对数为 $4+\frac{1}{2}\times(4-4\times1)=4$, 有 4 个 σ 键, 无孤电子对, 故 Sn 采取 sp³杂化,则 SnCl₄的 Sn—Cl 键是由锡的 sp³杂化轨道与氯的 3p 轨道重 叠形成 σ键。

2. (2024·山东选考)[BMIM] +BF₄(见图)是 MnO_x 晶型转变的诱导剂。

 BF_4^- 的空间构型为______; [BMIM] +中咪唑环存在 Π_5^6 大 π 键,则

- N 原子采取的轨道杂化方式为____。 嫉
- 3个碳原子各提供1个电子,2个氮原子各提供2个电子,再失去1个电
- 子,形成正一价离子,形成五中心六电子大键 Π_5^6

【答案】 正四面体形 sp²

【解析】 BF_4 中 B 形成 4 个 σ 键(其中有 1 个配位键),为 sp^3 杂化,空间构型为正四面体形;咪唑环存在 Π_5^6 大 π 键,N 原子形成 3 个 σ 键,杂化方式为 sp^2 。

3. (2023·北京选考)浸金时	\mathbf{f} , $\mathbf{S}_2\mathbf{O}_3^{2-}$ 作为配体可提供孤电子对与 $\mathbf{A}\mathbf{u}^+$ 形
成[Au(S ₂ O ₃) ₂] ³⁻ 。分别判断 S ₂ (O ₃ ²⁻ 中的中心 S 原子和端基 S 原子能否做配
位原子并说明理由:	\circ S ₂ O $_3^{2^-}$
的空间结构是	o

【答案】 $S_2O_3^{2-}$ 中的中心原子 S 的价层电子对数为 4,无孤电子对,不能做配位原子;端基 S 原子含有孤电子对,能做配位原子 四面体形

【解析】 具有孤电子对的原子就可以给中心原子提供电子配位。 $S_2O_3^{2-}$ 中的中心原子 $S_2O_3^{2-}$ 中的中心原子 $S_2O_3^{2-}$ 中的中心原子 $S_2O_3^{2-}$ 中的中心原子 $S_2O_3^{2-}$ 的价层电子对数为 $S_2O_3^{2-}$ 的中心原子 $S_2O_3^{2-}$ 的价层电子对数为 $S_2O_3^{2-}$ 可有作是 SO_4^{2-} 中 $S_2O_3^{2-}$ 中 $S_2O_3^{2-}$ 的空间构型为四面体形。

角度 2 分子性质差异原因的解释

- 4. (2023·湖北选考节选)导致SiCl₄比CCl₄易水解的因素有______(填标号)。
 - a. Si—Cl键极性更大
 - c. Si—Cl键键能更大

【答案】 abd

- b. Si的原子半径更大
- d. Si有更多的价层轨道

【解析】 Si—Cl键极性更大,则Si—Cl键更易断裂,因此,SiCl₄ 比CCl₄易水解,a有关;Si的原子半径更大,因此,SiCl₄中的共用电子 对更加偏向于CI,从而导致Si—CI键极性更大,且Si原子更易受到水电 离的OH⁻的进攻,因此,SiCl₄比CCl₄易水解,b有关;通常键能越大化 学键越稳定且不易断裂,因此,Si—Cl键键能更大不能说明Si—Cl更易 断裂,故不能说明SiCl₄比CCl₄易水解,c无关;Si有更多的价层轨道,因 此更易与水电离的OH-形成化学键,从而导致SiCl₄比CCl₄易水解,d有 关;综上所述,导致SiCl₄比CCl₄易水解的因素有abd。

5. (2023·山东选考)CIO,中心原子为CI, CI,O中心原子为O, 二者均 为V形结构,但ClO,中存在大π键(Π氧)。ClO,中Cl原子的轨道杂化方式为 _; O—Cl—O键 角 Cl—O—Cl键 角 (填"> ""<"或"=")。 受原子轨道重叠程度影响,重叠程度越大键长越短 比较CIO,与CI,O中CI—O键的键长并说明原因

【答案】 sp^2 > ClO_3 分子中Cl—O键的键长小于 Cl_3 O中Cl—O键的键长,其原因是: CIO_2 分子中既存在 σ 键,又存在大 π 键,原子轨道 重叠的程度较大,因此其中Cl—O键的键长较小,而Cl,O只存在普通的 σ 键

【解析】 ClO_2 中心原子为 Cl, Cl_2O 中心原子为 O, 二者均为 V形结构,但 CIO₂中存在大 π 键(Π_3^5)。由 CIO₂中存在 Π_3^5 可以推断,其中 CI 原子只能提供 1 对电子, 有一个 O 原子提供 1 个电子, 另一个 O 原 子提供 1 对电子, 这 5 个电子处于互相平行的 p 轨道中形成大 π 键, Cl提供孤电子对与其中一个 O 形成配位键, 与另一个 O 形成的是普通的共 价键(σ 键,这个 O 只提供了一个电子参与形成大 π 键), Cl 的价层电子 对数为3,则Cl原子的轨道杂化方式为sp2;Cl2O中心原子为O,根据 价层电子对的计算公式可知 $n=\frac{6+1\times2}{2}=4$,因此,O的杂化方式为 sp^3 ; 根据价层电子对互斥理论可知, n=4 时, 价电子对的几何构型为正四面

体,n=3时,价电子对的几何构型平面正三角形, sp^2 杂化的键角一定大于 sp^3 的,因此,虽然 ClO_2 和 Cl_2O 均为V形结构,但O—Cl—O键角大于Cl—O—Cl键角,孤电子对对成键电子对的排斥作用也改变不了这个结论。 ClO_2 分子中Cl—O键的键长小于 Cl_2O 中Cl—O键的键长,其原因是: ClO_2 分子中既存在 σ 键,又存在大 π 键,原子轨道重叠的程度较大,因此其中Cl—O键的键长较小,而 Cl_2O 只存在普通的 σ 键。

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问: https://d.book118.com/576140021200011015