Cooling and Solidification of Metal

Introduction

This example is a model of a continuous casting process. Liquid metal is poured into a mold of uniform cross section. The outside of the mold is cooled and the metal solidifies as it flows through the mold. When the metal leaves the mold, it is completely solidified on the outside but still liquid inside. The metal then continues to cool and eventually solidify completely, at which point it can be cut into sections. This tutorial simplifies the problem somewhat by not computing the flow field of the liquid metal and assuming there is no volume change during solidification. It is also assumed that the velocity of the metal is constant and uniform throughout the modeling domain. The phase transition from molten to solid state is modeled via the apparent heat capacity formulation. Issues of convergence and mesh refinement are addressed for this highly nonlinear model.

The Continuous Casting application is similar to this one, except that the velocity is computed from the Laminar Flow interface instead of being considered constant and uniform. For a detailed description of the application, see Continuous Casting.

Figure 1: A continuous casting process. The section where the metal is solidifying is being modeled.

Model Overview

The model simplifies the 3D geometry of the continuous casting to a 2D axisymmetric model composed of two rectangular regions: one representing the strand within the mold, and one the spray cooled region outside of the mold, prior to the saw cutoff. In the second section, there is also significant cooling via radiation to the ambient. In this region it is assumed that the molten metal is in a hydrostatic state, that the only motion in the fluid is due to the bulk downward motion of the strand. This simplification allows the assumption of bulk motion throughout the domain.

Since this is a continuous process, the system can be modeled at steady state. The heat transport is described by the equation:

$$\rho C_n \mathbf{u} \cdot \nabla T + \nabla \cdot (-k \nabla T) = 0$$

where k and C_p denote thermal conductivity and specific heat, respectively. The velocity, **u**, is the fixed casting speed of the metal in both liquid and solid states.

As the metal cools down in the mold, it solidifies. During the phase transition, a significant amount of latent heat is released. The total amount of heat released per unit mass of alloy during the transition is given by the change in enthalpy, ΔH . In addition, the specific heat capacity, C_p , also changes considerably during the transition. The difference in specific heat before and after transition can be approximated by

$$\Delta C_p = \frac{\Delta H}{T}$$

As opposed to pure metals, an alloy generally undergoes a broad temperature transition zone, over several Kelvin, in which a mixture of both solid and molten material co-exist in a "mushy" zone. To account for the latent heat related to the phase transition, the Apparent Heat capacity method is used through the Heat Transfer with Phase Change domain condition. The objective of the analysis is to make ΔT , the half-width of the transition interval small, such that the solidification front location is well defined.

Table 1 reviews the material properties in this tutorial.

PROPERTY	SYMBOL	MELT	SOLID
Density	$\rho \text{ (kg/m}^3\text{)}$	8500	8500

PROPERTY	SYMBOL	MELT	SOLID
Heat capacity at constant pressure	$C_p~({\rm J/(kg\cdot K)})$	531	380
Thermal conductivity	$k \; (W/(m\cdotK))$	150	300

The melting temperature, $T_{\rm m}$, and enthalpy, ΔH , are 1356 K and 205 kJ/kg, respectively.

This example is a highly nonlinear problem and benefits from taking an iterative approach to finding the solution. The location of the transition between the molten and solid state is a strong function of the casting velocity, the cooling rate in the mold, and the cooling rate in the spray cooled region. A fine mesh is needed across the solidification front to resolve the change in material properties. However, it is not known where this front will be.

By starting with a gradual transition between liquid and solid, it is possible to find a solution even on a relatively coarse mesh. This solution can be used as the starting point for the next step in the solution procedure, which uses a sharper transition from liquid to solid. This is done using the continuation method. Given a monotonic list of values to solve for, the continuation method uses the solution to the last case as the starting condition for the next. Once a solution is found for the smallest desired ΔT , the adaptive mesh refinement algorithm is used to refine the mesh to put more elements around the transition region. This finer mesh is then used to find a solution with an even sharper transition. This can be repeated as needed to get better and better resolution of the location of the solidification front.

In this example, the parameter ΔT is first ramped down from 300 K to 75 K, then the adaptive mesh refinement is used such that a finer mesh is used around the solidification front. The resultant solution and mesh are then used as starting points for a second study, where the parameter ΔT is further ramped down from 50 K to 25 K. The double-dogleg solver is used to find the solution to this highly nonlinear problem. Although it takes more time, this solver converges better in cases when material properties vary strongly with respect to the solution.

Results and Discussion

The solidification front computed with the coarsest mesh, and for $\Delta T = 75$ K, is shown in Figure 2. A wide transition between the molten and solid state is observed. The adaptive mesh refinement algorithm then refines the mesh along the solidification front because this is the region where the results are strongly dependent upon mesh size. This solution, and refined mesh, is used as the starting point for the next solution, which ramps the ΔT parameter down to 25 K. These results are shown in Figure 3.

The point of complete solidification moves slightly as the transition zone is made smaller. As the transition zone becomes smaller, a finer mesh is needed, otherwise the model might not converge. If it is desired to get an even better resolution of the solidification front, the solution procedure used here should be repeated to get an even finer mesh, and further ramp down the ΔT parameter.

The liquid phase fraction is plotted along the *r*-direction at the line at the bottom of the mold in Figure 4, and Figure 5 shows the liquid fraction along the centerline of the strand. For smaller values of ΔT , the transition becomes sharper, and the model gives confidence that the metal is completely solidified before the strand is cut.

Figure 2: The fraction of liquid phase for $\Delta T = 75$ K shows a gradual transition between the liquid and solid phase.

Figure 3: The fraction of liquid phase for $\Delta T = 25$ K shows a sharp transition between the liquid and solid phase.

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如 要下载或阅读全文,请访问: <u>https://d.book118.com/61711612200</u> 5006144