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Hexagona l  G r a t i n g

Introduction

A hexagonal grating is an infinite structure that is periodic with hexagonal (or 
rhomboid unit) cells. Figure 1 shows the hexagonal domain used for this model. The 
reflecting perfectly conducting surface consists of regularly spaced protruding 
semispheres.

Figure 1: The hexagonal domain, used for computing the diffraction from the hexagonal 
grating.

As shown in Figure 2, for a hexagonal cell of side length a, the corresponding unit cell 
is a rhomboid with side length 3a . In Figure 2, the side vectors for the hexagonal 
cell starts from the point P and are denoted a1 and a2. The angl ween a1 and a2 
is 120 degrees. Similarly, for the rhomboid unit cell, the primitive vectors are denoted 
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u1 and u2 and starts from the hexagon center point Q. The angl ween the two 
primitive vectors is also 120 degrees.

Figure 2: Schematic showing the hexagonal cells with side length a and side vectors a1 and 
a2. The primitive cells are defined by the primitive vectors u1 and u2.

If the  plane wave have a wave vector defined by

,  (1)

where k|| is the wave vector component parallel to the periodic boundary and k⊥ is 
the component orthogonal to the periodic boundary, the in-plane wave vector 
component for diffraction order mn is given by

,  (2)

where the reciprocal lattice vectors G1 and G2 are defined from the primitive vectors 
u1 and u2 as

 (3)

and

,  (4)

where n is the normal vector (length 1) to the periodic boundary.
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Since the out-of-plane wave vector component for mode mn is defined by

,  (5)

it is clear that for propagating modes, where the out-of-plane wave vector component 
above must be real, the length of the in-plane wave vector component must be smaller 
than the material wave number k. Figure 3 shows that it is only the modes inside the 
circle with radius k that will be propagating. In the example shown in Figure 3, there 
are five modes that will be propagating, in this case the modes m = n = 0 (the reflected 
wave), m = -1, n = 0, m = 0, n = -1, m = -1, n = -1, and m = -2, n = -1. All other 
modes will be evanescent and damped out.

Figure 3: The reciprocal lattice, showing the reciprocal lattice vectors G1 and G2, the 
in-plane wave vector component k||, and the circle with radius k (the material wave 
number) enclosing the propagating mode points (larger dots. The dotted hexagon indicates 
that also the reciprocal lattice is a hexagonal point lattice. The dashed rhomboid indicates 
the unit cell spanned by the reciprocal lattice vectors.

Model Definition

In this model, the unit cell is small compared to the wavelength, so there will only be 
two modes that are propagating, the modes m = 0, n = -1 and m = -1, n = -1. For 
wavelengths longer than approximately 1.01 μm (the critical wavelength), the mode 
m = 0, n = -1 will be evanescent.

First a wavelength sweep will be made for an  field having the polarization 
perpendicular to the plane of incidence (spanned by the wave vector for the  
wave and the normal to the periodic boundary) (so called s-polarization). Thereafter 

k⊥mn k2 k||mn
2–=
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another wavelength sweep is made, but now with the polarization in the plane of 
incidence (p-polarization).

Results and Discussion

Figure 4 shows the electric field norm and the propagation directions for the , 
the reflected and the diffracted waves. Notice that the diffracted waves come in pairs 
(both have the same mode numbers), one wave having the polarization in the 
plane-of-diffraction and the other wave have orthogonal polarization to the 
plane-of-diffraction. The plane-of-diffraction is spanned by the wave vector for the 
diffracted wave and the normal to the periodic boundary. The wavelength is close the 
critical wavelength for the m = 0, n = -1 mode. This is evident from the plot, as the 
wave vector for that mode (the yellow arrows) is almost parallel to the periodic 
boundary.

Figure 4: The electric field norm and the propagation directions for the  wave (red 
arrows), the reflected wave (blue arrows) and the two diffraction orders (green and yellow 
arrows). The wavelength is 1.01 μm, which is close to the critical wavelength for the mode 
m = 0, n = -1, and the polarization of the  wave is perpendicular to the plane of 
incidence.

Figure 5 shows the reflectance (for mode m = n = 0) and the diffraction efficiencies for 
the diffracted waves. Notice that both the reflectance and the diffraction efficiency for 
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the in-plane-polarized m = -1, n = -1 mode show resonances (peaks or dips) close to 
the critical wavelength for the m = 0, n = -1 modes. 

Figure 5: Diffraction efficiencies for the reflected wave and the diffracted waves. The 
polarization of the  wave is perpendicular to the plane of incidence.
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Figure 6 shows a similar plot as Figure 4, but here the polarization of the  wave 
is parallel with the plane of incidence.

Figure 6: Similar plot as in Figure 4, but here the polarization of the  wave is 
parallel to the plane of incidence.
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