# Altera PHYLite for Parallel Interfaces Loopback Reference Designs Application Note

2016.01.19

AN-747 Subscribe

Send Feedback

This application note showcases loopback reference designs using the Altera PHYLite IP core.

This document is divided into three main segments:

- 1. A simple input/output PHYLite simulation reference design.
- **2.** A simple input/output PHYLite with dynamic reconfiguration using Arria 10 devices hardware reference design.
- 3. Functional description for the modules and application used in both reference designs.

# Simple Input/Output PHYLite Simulation Design Example

This section provides architecture description and user guide for the simulation reference design.

# **Simulation Design Example Architecture**

The simulation reference design is a simple design that simulates the behavior of the Altera PHYLite IP core. This design consists of 2 main components:

- A device Under Test (DUT) module that includes two Altera PHYLite IP instances.
- A traffic generator module

© 2016 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.



#### Figure 1: Simulation Reference Design Block Diagram



# **Simulation Reference Design User Guide**

Follow these steps to setup and run the simulation reference design.

### Requirements

The following are the requirements to run the simulation reference design:

- Quartus Prime Design Suite<sup>®</sup> versions 15.1
- Simulation design example phylite\_top\_sim\_only.par

#### **Related Information**

- AN 747 Altera PHYLite Simulation Reference Design Files
- Getting Started with the Design Store Guideline to download and install design examples from Design Store.



Send Feedback

## **Setting Up Simulation Environment**

- 1. Follow the guidelines in Getting Started with the Design Store to download and install the reference design files.
- 2. Open the reference design .qpf file after successfully installing the design templates.
- 3. Click on Assignments -> Settings....
- 4. Select EDA Tools Settings -> Simulation.
- 5. At the Settings window, choose Modelsim-Altera for Tool Name. You may choose VHDL, Verilog HDL or System Verilog as the output netlist format.

#### Figure 2: Simulation Settings using EDA Tools in the Quartus Prime Software

| General                                                                        | Simulation                                                                |
|--------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Files                                                                          | Specify options for generating output files for use with other EDA tools. |
|                                                                                | Tool name: ModelSim-Altera                                                |
| <ul> <li>Design Templates</li> <li>Operating Settings and Condition</li> </ul> | Run gate-level simulation automatically after compilation                 |
| Voltage<br>Temperature                                                         | EDA Netlist Writer settings                                               |
| Compilation Process Settings                                                   | Format for output netlist: Verilog HDL Time scale: 1 ps                   |
| EDA Tool Settings                                                              | Output directory: simulation/modelsim                                     |
| Design Entry/Synthesis<br>Simulation                                           | □ Map illegal HDL characters □ □ Enable glitch filtering                  |
| Formal Verification<br>Board-Level                                             | Options for Power Estimation                                              |
| Compiler Settings                                                              | Generate Value Change Dump (VCD) file script     Script Settings          |
| - Verilog HDL Input<br>- Default Parameters                                    | Design instance name:                                                     |
| TimeQuest Timing Analyzer<br>Assembler                                         | More EDA Netlist Writer Settings                                          |
| SignalTap II Logic Analyzer                                                    | NativeLink settings                                                       |
| Logic Analyzer Interface                                                       | C None                                                                    |
| SSN Analyzer                                                                   | Compile test bench: tb                                                    |
|                                                                                |                                                                           |
|                                                                                |                                                                           |
|                                                                                | C Script to compile test bench: simulation/modelsim/runme.do              |
|                                                                                | More NativeLink Settings                                                  |
|                                                                                |                                                                           |
| <u>і — і </u>                                                                  | OK Cancel Apply Help                                                      |

### 6. Open dut\_INPUT.qsys file and make sure the IP has the same configuration shown below:

3

Send Feedback

4

#### Figure 3: Configuration for dut\_INPUT Module

| ystem: dut_INPUT Path: phylite_0                       |                                    | System: dut_INPUT Path: phylite_0               |                |                          |
|--------------------------------------------------------|------------------------------------|-------------------------------------------------|----------------|--------------------------|
| Altera PHYLite for Parallel Interfaces                 | Details<br>Generate Example Design | Altera PHYLite for Parallel Interfaces          |                | <u>D</u> etails          |
| itera_phylite                                          |                                    |                                                 |                | Generate Example Design. |
| Parameters                                             |                                    | * Parameters                                    |                |                          |
| Number of groups: 1                                    |                                    | Number of groups: 1                             |                |                          |
| General Group 0                                        |                                    | General Group 0                                 |                |                          |
| T Clarks                                               |                                    | Crown & Parameter Settings                      |                |                          |
| Interface clock frequency 800.0 MHz                    |                                    |                                                 |                |                          |
| Use core PLL reference clock connection                |                                    | Coby parameters from another group              |                |                          |
| Use recommended BL reference clock formulate           |                                    | Group 0 Pin Settings                            |                |                          |
| Ose recommended FEC reference clock frequency          |                                    | Pin type:                                       | Input 💌        |                          |
| VCO clock frequency: 200.0 MHz                         |                                    | Pin width:                                      | 4              |                          |
| Clock rate of user logic: Quarter                      |                                    | DDR/SDR:                                        | DDR 👻          |                          |
| Quarter                                                |                                    | Group 0 Input Path Settings                     |                |                          |
| Specify additional output clocks based on existing PLL |                                    | Read latency.                                   | 9 external     | interface clock cycles   |
| * Dynamic Reconfiguration                              |                                    | Swap capture strobe polarity                    |                |                          |
| Use dynamic reconfiguration                            |                                    | Capture strobe phase shift:                     | 0 degrees      |                          |
| Interface ID: 0                                        |                                    |                                                 | degrees        |                          |
| * I/O Settings                                         |                                    | " Group 0 Output Path Settings                  |                |                          |
| I/O standard: SSTI -15 Class I                         |                                    | write latency.                                  | 0lexternal     | Interface clock cycles   |
|                                                        |                                    | Use output strobe                               |                |                          |
|                                                        |                                    | Output strobe phase:                            | 90 💌 degrees   |                          |
|                                                        |                                    | * Group 0 General Data Settings                 |                |                          |
|                                                        |                                    | Data configuration:                             | Single ended 👻 |                          |
|                                                        |                                    | * Group 0 General Strobe Settings               |                |                          |
|                                                        |                                    | Strobe configuration:                           | Single ended   |                          |
|                                                        |                                    | Use separate strobes                            |                |                          |
|                                                        |                                    | * Group 0 OCT Settings                          |                |                          |
|                                                        |                                    | OCT enable size:                                | 1              |                          |
|                                                        |                                    | ☑ Use Default OCT Values                        |                |                          |
|                                                        |                                    | Input OCT Value:                                | No termination |                          |
|                                                        |                                    | Output OCT Value:                               | No termination |                          |
|                                                        |                                    | * Group 0 Timing Settings                       |                |                          |
|                                                        |                                    | Generate Input Delay Constraints for this group |                |                          |
|                                                        |                                    | Input Strobe Setup Delay Constraint:            | 0.03 ns        |                          |
|                                                        |                                    | Input Strobe Hold Delay Constraint:             | 0.03 ns        |                          |
|                                                        |                                    | Inter Symbol Interference of the Read Channel   | 0.09           |                          |

- 7. Make sure that the **Capture strobe phase shift** is set to **0** degrees to align the incoming data to strobe edge during data transfer.
- 8. Click Generate HDL... and select your desired simulation model format. Next, click Generate to generate the simulation model for the dut\_INPUT module. Click Close and Finish when the generation is complete.

Altera Corporation



## **Figure 4: Generating Simulation Model**

| Generation <@pg-slscf07>                                                             |                                                                                                                                                                                                            | <b>     </b> |
|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| ▼ Synthesis                                                                          |                                                                                                                                                                                                            |              |
| Synthesis files are used to compile th                                               | he system in a Quartus Prime project.                                                                                                                                                                      |              |
| Create HDL design files for synthesis                                                | 5: Verilog 🖵                                                                                                                                                                                               |              |
| Create timing and resource estin                                                     | nates for third-party EDA synthesis tools.                                                                                                                                                                 |              |
| Create block symbol file (.bsf)                                                      |                                                                                                                                                                                                            |              |
| <ul> <li>Simulation</li> </ul>                                                       |                                                                                                                                                                                                            |              |
| The simulation model contains gene                                                   | rated HDL files for the simulator, and may include simulation-only features.                                                                                                                               |              |
| Simulation scripts for this componen                                                 | t will be generated in a vendor-specific sub-directory in the specified output directory.                                                                                                                  |              |
| Follow the guidance in the generated<br>ip-setup-simulation and ip-make-s<br>design. | d simulation scripts about how to structure your design's simulation scripts and how to use the<br>imscript command-line utilities to compile all of the files needed for simulating all of the IP in your | ž            |
| Create simulation model:                                                             | Verilog 💌                                                                                                                                                                                                  |              |
| Allow mixed-language simulation                                                      |                                                                                                                                                                                                            |              |
| Enable this if your simulator support                                                | s mixed-language simulation.                                                                                                                                                                               |              |
| Output Directory                                                                     |                                                                                                                                                                                                            |              |
| Path:                                                                                | E/phylite_an/devplatforms/15.1.0/phylite_top_sim_only/phylite_top_sim_only_restored/dut_INP                                                                                                                | UT           |
| The path of the generation output d                                                  | irectory is fixed relative to the .qsys file.                                                                                                                                                              |              |
| Clear output directories for selec                                                   | ted generation targets.                                                                                                                                                                                    |              |
|                                                                                      | 사실 전에 가지 않는 것 같은 것 있다. 이렇게 있는 것 같은 것 같                                                                                                                                       |              |
|                                                                                      |                                                                                                                                                                                                            |              |
|                                                                                      |                                                                                                                                                                                                            |              |
|                                                                                      |                                                                                                                                                                                                            |              |
|                                                                                      | Generate                                                                                                                                                                                                   | ancel        |

**9.** From the Quartus<sup>®</sup> Prime software, open dut\_OUTPUT.qsys file and make sure the IP has the same configuration shown below:

Altera PHYLite for Parallel Interfaces Loopback Reference Designs Application Note



5

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如 要下载或阅读全文,请访问: <u>https://d.book118.com/62500120134</u> <u>4011224</u>