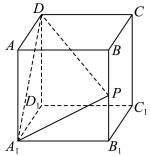
2023-2024学年高二数学下学期期中仿真模拟试卷05 数学

(新高考九省联考题型)

(考试时间: 120分钟 试卷满分: 150分)

注意事项:

- 1. 本试卷分第I卷(选择题)和第II卷(非选择题)两部分。答卷前,考生务必将自己的 姓名、准考证号填写在答题卡上。
- 2. 回答第I卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。如 需改动,用橡皮擦干净后,再选涂其他答案标号。写在本试卷上无效。


3.	回答第II卷时,将	答案写在答题卡上。写在	E本试卷上无效。	
4.	考试结束后,将本	试卷和答题卡一并交回。	5	
<u> </u>	、选择题:本题共	8 小题,每小题 5 分,共	ķ 40 分. 在每小题给出F	的四个选项中,只有
<u>—;</u>	项是符合题目要 求 的	的.		
		$\overrightarrow{AB} = \overrightarrow{a}$, $\overrightarrow{AC} = \overrightarrow{b}$, $\overrightarrow{AD} = \overrightarrow{AD}$	$=\stackrel{ ightarrow}{c}$,点 P 为 AB 中点,点	$Q_{\rightarrow CD}$ 靠近 D 的三等
分点	点,则 ^{PQ} 等于()		
Α.	$\frac{1}{2}\vec{a} + \frac{1}{3}\vec{b} + \frac{2}{3}\vec{c}$		B. $\frac{1}{2}\vec{a} - \frac{1}{3}\vec{b} + \frac{2}{3}\vec{c}$	
С.	$-\frac{1}{2}\vec{a} - \frac{1}{3}\vec{b} + \frac{2}{3}\vec{c}$		D. $-\frac{1}{2}\vec{a} + \frac{1}{3}\vec{b} + \frac{2}{3}\vec{c}$	
2.	已知随机变量 <i>ξ</i> 服从	正态分布 $N(1,2)$,则 $D(2)$	$2\xi + 4) = ()$	
Α.	4	В. 6	C. 11	D. 8
3.	用1, 2, 3, 4四个	数字组成没有重复数字的三	E位偶数,共有 ()	
Α.	6个	B. 18个	C. 24 个	D. 12个
4.	$(2-x)^5$ 展开式中的	的第三项为()		
Α.	$10x^{2}$	B. $40x^3$	C. $-40x^3$	D. $80x^2$
5.	一个袋中有4个红球,	3个黑球,小明从袋中随机	取球,设取到一个红球得2	分,取到一个黑球得1分
从组	፟	明得分大于6分的概率是()	
Λ	13	B. $\frac{14}{35}$. 18	22
A.	35	$\frac{1}{35}$	$\overline{35}$	$\overline{35}$
6.	在数学中,有一个被	称为自然常数(又叫欧拉数) 的常数 e ≈ 2.71828. 小男	明在设置银行卡的数字
宓石	马时, 打管将自然堂料	的前6位数字2.7.1.8.5	2.8讲行某种排列得到家庭	3. 加果排列时要求9不排

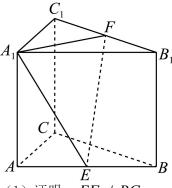
第一个,两个8相邻,那么小明可以设置的不同的密码个数为() A. 30 B. 32 C. 36 D. 48 7. 某保险公司将其公司的被保险人分为三类: "谨慎的""一般的""冒失的". 统计资料表明, 这

三类人在一年内发生事故的概率依次为0.05,0.15,0.30.若该保险公司的被保险人中"谨慎的"被保 险人占20%, "一般的"被保险人占50%, "冒失的"被保险人占30%,则该保险公司的一个被保 险人在一年内发生事故的概率是()

C. 0.016 D. 0.096 A. 0.155 B. 0.175

- 8. 已知实数x, y满足 $e^y \ln x = ye^x$, y > 1, 则下列不等式一定成立的是 ()
- A. x + y < 2
- B. y > x
- C. y < x + 1
- D. $xy < e^2$
- 二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.
- 9. 某大学的3名男生和3名女生利用周末到社区进行志愿服务,当天活动结束后,这6名同学排成一排合影留念,则下列说法正确的是()
- A. 若要求3名女生相邻,则这6名同学共有144种不同的排法
- B. 若要求女生与男生相间排列,则这6名同学共有36种排法
- C. 若要求3名女生互不相邻,则这6名同学共有144种排法
- D. 若要求男生甲不在排头女生乙不在排尾,则这6名同学共有480种排法
- 10. 一个口袋中有大小形状完全相同的3个红球和4个白球,从中取出2个球.下列命题正确的是
- A. 如果是不放回地抽取,那么取出2个红球和取出2个白球是对立事件
- B. 如果是不放回地抽取,那么第2次取到红球的概率等于第1次取到红球的概率
- C. 如果是有放回地抽取,那么取出1个红球1个白球的概率是 $\frac{24}{49}$
- D. 如果是有放回地抽取,那么在至少取出一个红球的条件下,第 2 次取出红球的概率是 $\frac{7}{11}$
- 11. 如图,在棱长为1的正方体 $ABCD A_lB_lC_lD_l$ 中,P为棱 BB_l 的中点,Q为正方形 BB_lC_lC 内一动点(含边界),则下列说法中正确的是()

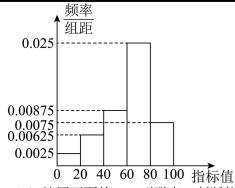
- A. 若 D_1Q // 平面 A_1PD ,则动点Q的轨迹是一条线段
- B. 存在Q点,使得 D_1Q 上平面 A_1PD
- C. 当且仅当Q点落在棱 CC_1 上某点处时,三棱锥 $Q-A_1PD$ 的体积最大
- D. 若 $D_{\rm I}Q = \frac{\sqrt{6}}{2}$, 那么 Q点的轨迹长度为 $\frac{\sqrt{2}}{4}\pi$
- 三、填空题: 本题共3小题,每小题5分,共15分.
- 12. 已知点 A(-1,2,-1),平面 α 经过原点 O,且垂直于向量 n=(1,-1,3),则点 A 到平面 α 的距离 为______.
- 13. 有5人参加某会议,现将参会人安排到酒店住宿,要在a、b、c 三家酒店选择一家,且每家酒店至少有一个参会人入住,则这样的安排方法共有
- 14. 已知正方体 $ABCD A_lB_lC_lD_l$ 的棱长为1, P , Q , R 分别在棱 AB , CC_l , D_lA_l 上,且满足 $AP = CQ = D_lR = a(0 < a < 1)$, G 是 PQR 的重心,若直线 DG 与平面 CPQ 所成角为 45° ,则 a 的值为______.


四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.

- 15. 已知 $\left(\sqrt{x} + \frac{2}{\sqrt[3]{x}}\right)^n$ 展开式中的第3项与倒数第2项的二项式系数之和为55.
- (1) 求 n的值;
- (2) 求展开式中所有的有理项.

16. 甲、乙两位同学参加学校组织的数学文化知识答题游戏,规则如下: 甲同学先回答2道题,至少答对一道题后,乙同学才有机会答题,同样也是两次答题机会. 两位同学每答对一道题可获得5积分,答错不得分,甲同学每道题答对的概率均为 $\frac{3}{4}$,乙同学每道题答对的概率均为 $\frac{1}{2}$,每道题答对与否互不影响.

- (1) 求乙同学有机会答题的概率;
- (2) 记 // 为甲和乙同学一共拿到的积分, 求 // 的分布列和数学期望.


17. 如图,在直三棱柱 $ABC - A_1B_1C_1$ 中, E,F 分别是棱 AB,B_1C_1 的中点, $\angle ACB = \frac{\pi}{2}$.

- (1) 证明: $EF \perp BC$;
- (2) 若 AC=2, BC=4, 平面 A_1EF 与平面 ABC 所成的锐二面角的角余弦值为 $\frac{1}{3}$, 求直线 EF 与平面 ABC 所成角的正弦值.

18. 为了检测某种抗病毒疫苗的免疫效果,需要进行动物与人体试验. 研究人员将疫苗注射到200只小白鼠体内,一段时间后测量小白鼠的某项指标值,按[0,20),[20,40),[40,60),[60,80),[80,100)分组,绘制频率分布直方图如图所示,实验发现小白鼠体内产生抗体的共有160只,其中该项指标值不小于60的有110只,假设小白鼠注射疫苗后是否产生抗体相互独立.

	指标值				
抗体	小于60	不小于60	合计		
有抗体					
没有抗体					
合计					

- (1) 填写下面的2×2列联表,判断能否有95%的把握认为注射疫苗后小白鼠产生抗体与指标值不小于60有关.
- (2) 为检验疫苗二次接种的免疫抗体性,对第一次注射疫苗后没有产生抗体的40只小白鼠进行第二次注射疫苗,结果又有20只小自鼠产生抗体.
- (i) 用频率估计概率,求一只小白鼠注射2次疫苗后产生抗体的概率P;
- (ii) 以(i) 中确定的概率 P 作为人体注射2次疫苗后产生抗体的概率,进行人体接种试验,记2个人注射2次疫苗后产生抗体的数量为随机变量 X,求X的概率分布.

参考公式:
$$K^2 = \frac{n(ad-bc)^2}{(a+b)(c+d)(a+c)(b+d)}$$
 (其中 $n = a+b+c+d$ 为样本容量)

(" -)()()									
$P\left(\chi^2 \ge k_0\right)$	0.50	0.40	0.25	0. 15	0.100	0.050	0.025		
k_0	0. 455	0.708	1. 323	2. 072	2. 706	3. 841	5. 024		

- 19. 已知函数 $f(x) = axe^x \ln(x+1)(a \in \mathbf{R})$.
- (1) 讨论 f(x) 的极值点的个数;
- (2) 若 $f(x) \ge 2 \ln a 3 \ln 2 3$ 恒成立, 求实数a的最大值.

2023-2024学年高二数学下学期期中仿真模拟试卷05 数 学

(新高考九省联考题型)

(考试时间: 120分钟 试卷满分: 150分)

注意事项:

- 1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。答卷前,考生务必将自己的 姓名、准考证号填写在答题卡上。
- 2. 回答第I卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。写在本试卷上无效。
- 3. 回答第Ⅱ卷时,将答案写在答题卡上。写在本试卷上无效。
- 4. 考试结束后,将本试卷和答题卡一并交回。
- 一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
- 1. 空间四边形 ABCD 中, $\overline{AB}=\overrightarrow{a}$, $\overline{AC}=\overrightarrow{b}$, $\overline{AD}=\overrightarrow{c}$, 点 P 为 AB 中点, 点 Q 为 CD 靠近 D 的三等 分点,则 \overrightarrow{PQ} 等于(

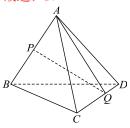
A.
$$\frac{1}{2}\vec{a} + \frac{1}{3}\vec{b} + \frac{2}{3}\vec{c}$$

B.
$$\frac{1}{2}\vec{a} - \frac{1}{3}\vec{b} + \frac{2}{3}\vec{c}$$

C.
$$-\frac{1}{2}\vec{a} - \frac{1}{3}\vec{b} + \frac{2}{3}\vec{c}$$

D.
$$-\frac{1}{2}\vec{a} + \frac{1}{3}\vec{b} + \frac{2}{3}\vec{c}$$

【答案】D


【解析】在四面体ABCD中, $\overrightarrow{AB}=\overrightarrow{a}$, $\overrightarrow{AC}=\overrightarrow{b}$, $\overrightarrow{AD}=\overrightarrow{c}$,

点P为AB中点,点Q为CD靠近D的三等分点,则

$$\overrightarrow{PQ} = \overrightarrow{AQ} - \overrightarrow{AP} = \left(\overrightarrow{AD} + \frac{1}{3}\overrightarrow{DC}\right) - \frac{1}{2}\overrightarrow{AB} = \overrightarrow{AD} + \frac{1}{3}\left(\overrightarrow{AC} - \overrightarrow{AD}\right) - \frac{1}{2}\overrightarrow{AE}$$

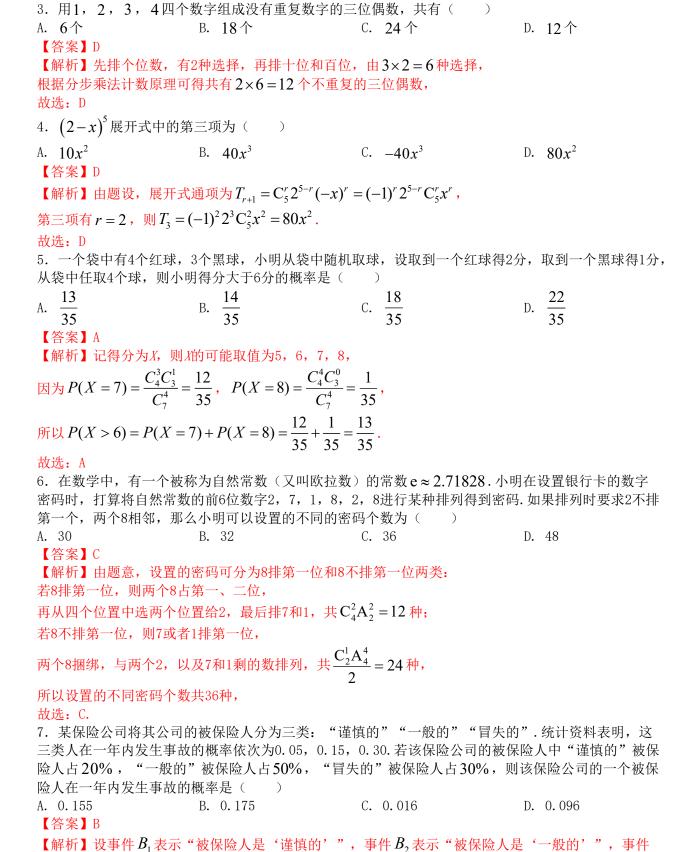
$$= -\frac{1}{2} \overrightarrow{AB} + \frac{1}{3} \overrightarrow{AC} + \frac{2}{3} \overrightarrow{AD} = -\frac{1}{2} \vec{a} + \frac{1}{3} \vec{b} + \frac{2}{3} \vec{c}$$

故选: D.

- 2. 已知随机变量 ξ 服从正态分布N(1,2),则 $D(2\xi+4)=$ ()
- A. 4

B. 6

C. 11


D. 8

【答案】D

【解析】:随机变量 ξ 服从正态分布N(1,2), $\therefore D(\xi) = 2$,

则 $D(2\xi+3) = 2^2 \times D(\xi) = 8$.

故选: D.

 B_3 表示"被保险人是'冒失的'",则 $P(B_1)=20\%$, $P(B_2)=50\%$, $P(B_3)=30\%$. 设事件 A 表 示"被保险人在一年内发生事故",则 $P(A|B_1)=0.05$, $P(A|B_2)=0.15$, $P(A|B_3)=0.30$.由 全概率公式,得 $P(A) = \sum_{i=1}^{3} P(B_i) P(A \mid B_i) = 0.05 \times 20\% + 0.15 \times 50\% + 0.30 \times 30\% = 0.175$.

故选: B

8. 已知实数x, y满足 $e^y \ln x = ye^x$, y > 1, 则下列不等式一定成立的是(

$$A. \quad x + y < 2$$

B.
$$y > x$$

C.
$$y < x + 1$$

D.
$$xv < e^2$$

【答案】B

【解析】由 $e^y \ln x = ye^x$ 可得 $\frac{e^y}{v} = \frac{e^x}{\ln x}$, 由于 y > 1, $e^y > 0$, 所以 $\frac{e^y}{v} > 0$, ∴ $\frac{e^x}{\ln x} > 0$, 则 $\ln x > 0$,

故x>1,则x+y>2,故A错误,

增, 故 f(x) > f(1) = 1, 所以 $x - \ln x > 1$, 故 $x - \ln x > 0$,

曲于 $x > \ln x > 0$,所以 $\frac{e^x}{r} < \frac{e^x}{\ln r}$,又 $\frac{e^y}{v} = \frac{e^x}{\ln x}$,则 $\frac{e^y}{v} > \frac{e^x}{x}$,

 $\Rightarrow g(x) = \frac{e^x}{x}, g'(x) = \frac{e^x(x-1)}{x}, \exists x > 1$ 时, g'(x) > 0,所以 g(x)在 $(1,+\infty)$ 上单调递增,由于

x > 1, y > 1, 且 $\frac{e^y}{v} > \frac{e^x}{x}$, 即 g(y) > g(x), 所以 y > x > 1, 故B正确,

 $\Rightarrow h(x) = x + 1 - e \ln x, h'(x) = 1 - \frac{e}{x} = \frac{x - e}{x}, \text{ is } x > e, h'(x) > 0, \text{ is } 1 < x < e, h'(x) < 0, \text{ is } x > e, h'(x) > 0$

 $x = e, h(x)_{min} = e+1-e>0$, $\boxtimes x+1>e \ln x \Rightarrow \frac{e^x}{\ln x} > \frac{e^{x+1}}{x+1}$, $Z = \frac{e^x}{\ln x} = \frac{e^x}{\ln x}$, $\iiint \frac{e^y}{v} > \frac{e^{x+1}}{x+1}$, $\frac{d}{dx} = \frac{dx}{dx} = \frac{dx$

合g(x)的单调性可得y>x+1,故C错误,

由 $e^y \ln x = ye^x$ 得 $e^{y-x} = \frac{y}{\ln x}$, $\therefore y - x > 1$, $\therefore e^{y-x} > e$, 故 $\frac{y}{\ln x} > e$, 所以 $y > e \ln x$,

则 $xy > ex \ln x$, 由于 x > e, y = x > 0, $y = \ln x > 0$ 且均为单调递增,所以 $m(x) = x \ln x$ 在 x > e 单调 递增,故m(x) > m(e) = e,故当x > e时, $xy > ex \ln x > e^2$,故D错误,

故选: B

- 二、选择题: 本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题 目要求. 全部选对的得6分, 部分选对的得部分分, 有选错的得0分.
- 9. 某大学的3名男生和3名女生利用周末到社区进行志愿服务, 当天活动结束后, 这6名同学排成一排 合影留念,则下列说法正确的是(
- A. 若要求3名女生相邻,则这6名同学共有144种不同的排法
- B. 若要求女生与男生相间排列,则这6名同学共有36种排法
- C. 若要求3名女生互不相邻,则这6名同学共有144种排法
- D. 若要求男生甲不在排头女生乙不在排尾,则这6名同学共有480种排法

【答案】AC

【解析】选项A,将3名女生捆绑在一起,再与3名男生进行全排列,则有 $A_3^3A_4^4=144$ (种),故A正确,

选项B, 要求女生与男生相间排列, 采用插空法, 则有 $2A_3^3A_3^3 = 72$ (种), 故B错误,

选项C, 先排3名男生,3名女生插空,则有 $A_3^3A_4^3=144$ (种), 故C正确,

选项D, 若男生甲在排尾,则有 $A_5^5 = 120$ (种); 若男生甲不在排头也不在排尾,则有

 $A_4^1 A_4^1 A_4^4 = 384 \ (\ref{4})$,

所以男生甲不在排头女生乙不在排尾,共有120+384=504种排法,故D错误. 故选: AC.

- 10. 一个口袋中有大小形状完全相同的3个红球和4个白球,从中取出2个球.下列命题正确的是
- A. 如果是不放回地抽取,那么取出2个红球和取出2个白球是对立事件
- B. 如果是不放回地抽取,那么第2次取到红球的概率等于第1次取到红球的概率
- C. 如果是有放回地抽取,那么取出1个红球1个白球的概率是 $\frac{24}{49}$
- D. 如果是有放回地抽取,那么在至少取出一个红球的条件下,第 2 次取出红球的概率是 $\frac{7}{11}$

【答案】BCD

【解析】对于A: 如果是不放回地抽取,那么得到的取球结果有(红红)(白白)(白红)(红白),取出两个红球和取出两个白球不是对立事件,故A错误;

对于B: 如果是不放回地抽取,那么第2次取到红球的概率为 $\frac{3\times2+4\times3}{7\times6}=\frac{3}{7}$,第1次取到红球的概率为 $\frac{3}{7}$,故B正确;

对于C: 如果是有放回地抽取,那么取出1个红球1个白球的概率是 $\frac{2 \times C_4^l \times C_3^l}{C_7^l \times C_7^l} = \frac{24}{49}$, 故C正确;

对于D: 至少取出一个红球的概率为 $P_1 = 1 - P(两白) = 1 - \frac{4 \times 4}{7 \times 7} = \frac{33}{49}$

至少取出一个红球且第二次取出红球的概率 $P_2 = P$ (两红) +P (第一次白第二次红) $= (\frac{3}{7})^2 + \frac{4 \times 3}{7 \times 7} = \frac{3}{7}$,

故
$$P = \frac{P_2}{P_1} = \frac{\frac{3}{7}}{\frac{33}{49}} = \frac{7}{11}$$
,故D正确.

故选: BCD

11. 如图,在棱长为1的正方体 $ABCD - A_1B_1C_1D_1$ 中,P为棱 BB_1 的中点,Q为正方形 BB_1C_1C 内一动点(含边界),则下列说法中正确的是(

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问: https://d.book118.com/67804706302 7006103