
2025年高考化学课件

作业48 物质含量测定的综合实验

A组 基础达标

1.(2024·浙江嘉兴高三一模)重铬酸钾($K_2Cr_2O_7$)是一种重要的化工原料,一般由铬铁矿制备,铬铁矿的主要成分为 $FeO\cdot Cr_2O_3$,还含有 SiO_2 、 Al_2O_3 等杂质。制备流程如图所示:

已知:步骤①高温下的主反应为2FeO·Cr₂O₃+4Na₂CO₃+7NaNO₃ <u>高温</u>4Na₂CrO₄+Fe₂O₃+4CO₂↑+7NaNO₂

1 2 3

常见物质的溶解度			
物质	0 °C(g)	40 °C(g)	80 °C(g)
KC1	28.0	40.1	51.3
NaC1	35.7	36.4	38.0
K ₂ Cr ₂ O ₇	4.7	26.3	73
Na ₂ Cr ₂ O ₇	163	215	375

- (1)滤渣1的主要成分是__Fe₂O₃__。
- (2)步骤④调节pH时发生反应的离子方程式为_ __。2CrO₄²+2H⁺==-Cr₂O₇²+H₂O

- (3)下列说法不正确的是___AB___。
- A.步骤①可在陶瓷容器中进行
- B.为了加快步骤②中的过滤速度,可用玻璃棒小心翻动沉淀
- C.步骤③的目的是使杂质离子转化为沉淀而除去
- D.步骤⑤加入KCI后发生的是复分解反应
- (4)步骤⑤加入KCl后,还需经过蒸发浓缩、冷却结晶、过滤、洗涤、干燥等操作,洗涤K,Cr,O,粗产品时可选择____。
- A.冷水 B.饱和氯化钾溶液
- C.热水 D.冷的酒精

(5)测定产品的纯度

- ①K₂Cr₂O₇的纯度为<u>88.2%</u>。
- ②上述操作都正确,但实际测得的K₂Cr₂O₇纯度偏高,可能的原因是 滴定过程中过量I-被空气中O₂氧化生成I₂,导致消耗的Na₂S₂O₃溶液体积 变大,测定结果偏高

解析 铬铁矿中加入Na₂CO₃、NaNO₃熔融、氧化,发生反应 2FeO·Cr₂O₃+4Na₂CO₃+7NaNO₃ <u>高温</u> 4Na₂CrO₄+Fe₂O₃+4CO₂↑+7NaNO₂,生 成的熔块主要成分为Na₂CrO₄、Fe₂O₃、NaAlO₂、Na₂SiO₃和NaNO₂,经水 浸、过滤得到滤渣1主要成分为Fe₂O₃,滤液1调节pH=7,过滤得到滤渣2主 要成分为H₂SiO₃、Al(OH)₃,滤液2中溶质为Na₂CrO₄、NaNO₂,加酸调节pH, 过滤得到的滤液3主要溶质为Na₂Cr₂O₇,加入KCl发生复分解反应,通过一系 列操作后得到K2Cr2O2,据此分析解答。

(2)步骤④调节 pH,目的是将 CrO_4^{2-} 转化为 $Cr_2O_7^{2-}$,反应的离子方程式为

$$2CrO_4^{2-}+2H^+ \longrightarrow Cr_2O_7^{2-}+H_2O_{\circ}$$

- (3)陶瓷容器中含二氧化硅,碳酸钠在高温条件下与二氧化硅反应生成硅酸钠,因此步骤①不可在陶瓷容器中进行,A错误;用玻璃棒小心翻动沉淀,可能戳破滤纸,使实验失败,B错误;步骤③的目的是将[Al(OH)4]-和 SO3⁻ 转化为沉淀而除去,C正确;步骤⑤是重铬酸钠和氯化钾反应生成氯化钠和重铬酸钾,反应类型是复分解反应,D正确。
- (4)由表格数据可知,K₂Cr₂O₇在低温下的溶解度较小,为减少产品损失,可采用冷水洗涤粗产品,故选A。
- (5)①由得失电子守恒可得关系式 $Cr_2O_7^{2-} \sim 3I_2 \sim 6S_2O_3^{2-}$,则 $K_2Cr_2O_7$ 的纯度为

$$\frac{0.030\ 0 mol \cdot L^{\text{--}1} \times 22.50 \times 10^{\text{--}3} L \times \frac{1}{6} \times \frac{250\ mL}{25\ mL} \times 294\ g \cdot mol^{\text{--}1}}{0.375\ 0\ g} \times 100\% = 88.2\% \, .$$

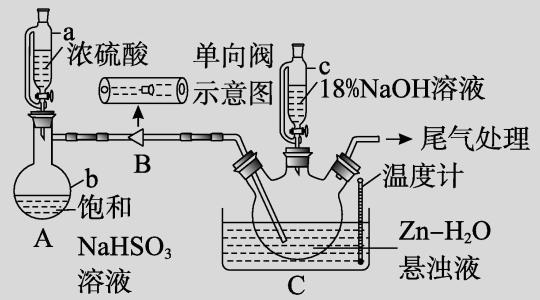
2.(2023·浙江嘉兴高三9月统测)连二亚硫酸钠(Na₂S₂O₄)是无机精细化学品, 在造纸、印染等行业应用广泛。可通过以下方案制备Na₂S₂O₄并测定其纯 度。

I.Na₂S₂O₄的制备

步骤1:安装好整套装置,并检查气密性;

步骤2:在三颈烧瓶中依次加入Zn粉和水,电磁搅拌形成悬浊液;

步骤3:打开仪器a的活塞,向装置C中通入一段时间SO2;


步骤4:打开仪器c的活塞,滴加稍过量NaOH溶液,控制pH在8.2~10.5之间;

步骤5:过滤,将滤液经"一系列操作"可获得Na₂S₂O₄。

已知:①Na₂S₂O₄在空气中极易被氧化,不溶于乙醇,在碱性介质中较稳定。


②低于52°C时Na₂S₂O₄在水溶液中以Na₂S₂O₄·2H₂O形态结晶,高于52°C时Na₂S₂O₄·2H₂O在碱性溶液中脱水成无水盐。

③Zn(OH)2呈现两性。请回答:

(1)仪器b的名称是___<u>蒸馏烧瓶___</u>。

(2)装置B的作用是防倒吸,将下图补充完整代替装置B。

(3)步骤3中生成物为ZnS₂O₄,该反应需在35~45°C进行,其原因为 温度低反应速率慢,温度高会降低二氧化硫在水中的溶解度,造成原料利用

率降低

- (4)下列关于步骤4的说法不正确的是_AD___。
- A.pH过大Zn²+沉淀完全,且Na₂S₂O₄能稳定存在
- B.pH过小Zn²⁺会沉淀不完全,产品中会产生含锌杂质
- C.装置C中溶液均应用无氧水配制
- D.不可以用碳酸钠溶液代替氢氧化钠溶液
- (5)"一系列操作"包括:a.趁热过滤;b.用乙醇洗涤;c.搅拌下用水蒸气加热至
- 60 ℃左右;d.分批加入细食盐粉,搅拌使其结晶,用倾析法除去上层溶液,余少量母液。
- 上述操作的合理顺序为__dcab__(填字母)→干燥。

II.含量的测定

实验过程需在氮气氛围中进行,称取0.2500g样品加入三颈烧瓶中,加入适量NaOH溶液,打开电磁搅拌器,通过滴定仪控制滴定管向三颈烧瓶中快速滴加0.1000mol·L-1 K₃[Fe(CN)₆]标准溶液,达到滴定终点时消耗25.00mL标准溶液。

(6)样品中 $Na_2S_2O_4$ 的质量分数为<u>87%</u> (假设杂质不参与反应);若实验过程中未通入 N_2 ,对测定 $Na_2S_2O_4$ 含量的影响是<u>偏低</u>(填"偏低""偏高"或"无影响")。

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问: https://d.book118.com/69812406103 7007006