
Dynamic Programming:

Sequence alignment

CS 466

Saurabh Sinha

DNA Sequence Comparison: First

Success Story

• Finding sequence similarities with genes of

known function is a common approach to

infer a newly sequenced gene’s function
• In 1984 Russell Doolittle and colleagues

found similarities between cancer-causing

gene and normal growth factor (PDGF) gene

• A normal growth gene switched on at the

wrong time causes cancer !

Cystic Fibrosis

• Cystic fibrosis (CF) is a chronic and frequently fatal genetic
disease of the body's mucus glands. CF primarily affects the
respiratory systems in children.

• Search for the CF gene was narrowed to ~1 Mbp, and the
region was sequenced.

• Scanned a database for matches to known genes. A
segment in this region matched the gene for some ATP
binding protein(s). These proteins are part of the ion transport
channel, and CF involves sweat secretions with abnormal
sodium content!

Role for Bioinformatics

• Gene similarities between two genes with known
and unknown function alert biologists to some
possibilities

• Computing a similarity score between two genes
tells how likely it is that they have similar
functions

• Dynamic programming is a technique for
revealing similarities between genes

Motivating Dynamic

Programming

Dynamic programming example:

Manhattan Tourist Problem

Imagine seeking a

path (from source

to sink) to travel

(only eastward and

southward) with the

most number of

attractions (*) in the

Manhattan grid Sink
*

*

*

*

*

**

* *

*

*

Source

*

Imagine seeking a

path (from source

to sink) to travel

(only eastward and

southward) with the

most number of

attractions (*) in the

Manhattan grid Sink
*

*

*

*

*

**

* *

*

*

Source

*

Dynamic programming example:

Manhattan Tourist Problem

Manhattan Tourist Problem: Formulation

Goal: Find the longest path in a weighted

grid.

Input: A weighted grid G with two distinct

vertices, one labeled “source” and the other
labeled “sink”

Output: A longest path in G from “source” to
“sink”

MTP: An Example

3 2 4

0 7 3

3 3 0

1 3 2

4

4

5

6

4

6

5

5

8

2

2

5

0 1 2 3

0

1

2

3

j coordinate
i
c
o
o
rd

in
a
te

13

source

sink

4

3 2 4 0

1 0 2 4 3

3

1

1

2

2

2

4
19

95

15

23

0

20

3

4

MTP: Greedy Algorithm Is Not Optimal

1 2 5

 2 1 5

2 3 4

0 0 0

5

3

0

3

5

0

10

3

5

5

1

2
promising start,

but leads to

bad choices!

source

sink
18

22

MTP: Simple Recursive

Program
MT(n,m)

 if n=0 or m=0

 return MT(n,m)

 x  MT(n-1,m)+

 length of the edge from (n- 1,m) to
(n,m)

 y  MT(n,m-1)+

 length of the edge from (n,m-1) to
(n,m)

 return max{x,y}What’s wrong with this approach?

Here’s what’s wrong

• M(n,m) needs M(n, m-1) and M(n-1, m)

• Both of these need M(n-1, m-1)

• So M(n-1, m-1) will be computed at

least twice

• Dynamic programming: the same idea

as this recursive algorithm, but keep all

intermediate results in a table and reuse

1

5

0 1

0

1

i

source

1

5

S1,0 = 5

S0,1 = 1

• Calculate optimal path score for each vertex in the graph

• Each vertex’s score is the maximum of the prior vertices
score plus the weight of the respective edge in between

MTP: Dynamic Programming
j

MTP: Dynamic Programming

(cont’d)

1 2

5

3

0 1 2

0

1

2

source

1 3

5

8

4

S2,0 = 8

i

S1,1 = 4

S0,2 = 3
3

-5

j

MTP: Dynamic Programming

(cont’d)

1 2

5

3

0 1 2 3

0

1

2

3

i

source

1 3

5

8

8

4

0

5

8

103

5

-5

9

13

1-5

S3,0 = 8

S2,1 = 9

S1,2 = 13

S3,0 = 8

j

MTP: Dynamic Programming

(cont’d)

greedy alg. fails!

1 2 5

-5 1 -5

-5 3

0

5

3

0

3

5

0

10

-3

-5

0 1 2 3

0

1

2

3

i

source

1 3 8

5

8

8

4

9

13 8

9

12

S3,1 = 9

S2,2 = 12

S1,3 = 8

j

MTP: Dynamic Programming

(cont’d)

1 2 5

-5 1 -5

-5 3 3

0 0

5

3

0

3

5

0

10

-3

-5

-5

2

0 1 2 3

0

1

2

3

i

source

1 3 8

5

8

8

4

9

13 8

12

9

15

9

j

S3,2 = 9

S2,3 = 15

MTP: Dynamic Programming

(cont’d)

1 2 5

-5 1 -5

-5 3 3

0 0

5

3

0

3

5

0

10

-3

-5

-5

2

0 1 2 3

0

1

2

3

i

source

1 3 8

5

8

8

4

9

13 8

12

9

15

9

j

0

1

16
S3,3 = 16

(showing all back-traces)

Done!

MTP: Recurrence

Computing the score for a point (i,j) by the

recurrence relation:

si, j =
max

si-1, j + weight of the edge between (i-1, j) and (i, j)

si, j-1 + weight of the edge between (i, j-1) and (i, j)

The running time is n x m for a n by m grid

(n = # of rows, m = # of columns)

Manhattan Is Not A Perfect Grid

What about diagonals?

• The score at point B is given by:

sB =
max

of

sA1 + weight of the edge (A1, B)

sA2 + weight of the edge (A2, B)

sA3 + weight of the edge (A3, B)

B

A3

A1

A2

Manhattan Is Not A Perfect Grid (cont’d)

Computing the score for point x is given by the

recurrence relation:

sx = max

of

sy + weight of vertex (y, x) where

 y є Predecessors(x)

• Predecessors (x) – set of vertices that have edges
leading to x

•The running time for a graph G(V, E)

(V is the set of all vertices and E is the set of all edges)

is O(E) since each edge is evaluated once

Traveling in the Grid

•By the time the vertex x is analyzed, the values

sy for all its predecessors y should be computed

– otherwise we are in trouble.

•We need to traverse the vertices in some order

•For a grid, can traverse vertices row by row,

column by column, or diagonal by diagonal

Traversing the Manhattan Grid

• 3 different strategies:

–a) Column by column

–b) Row by row

–c) Along diagonals

a) b)

c)

Traversing a DAG

• A numbering of vertices of the graph is

called topological ordering of the DAG if

every edge of the DAG connects a vertex

with a smaller label to a vertex with a

larger label

• How to obtain a topological ordering ?

以上内容仅为本文档的试下载部分，为可阅读页数的一半内容。如要下载或阅读全文，请访
问：https://d.book118.com/725021244340011241

https://d.book118.com/725021244340011241

