2024年新课标Ⅱ卷高考数学试题及答案

本试卷共 10 页, 19 小题, 满分 150 分.

注意事项:

- 1. 答题前, 先将自己的姓名、准考证号、考场号、座位号填写在试卷和答题卡上, 并将准 考证号条形码粘贴在答题卡上的指定位置.
- 2. 选择题的作答:每小题选出答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂黑.写 在试卷、草稿纸和答题卡上的非答题区域均无效.
- 3. 填空题和解答题的作答: 用黑色签字笔直接答在答题卡上对应的答题区域内. 写在试卷、草稿纸和答题卡上的非答题区域均无效.
- 4. 考试结束后,请将本试卷和答题卡一并上交.
- 一、单项选择题:本大题共 8 小题,每小题 5 分,共 40 分.在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.

)

1.	已知 z 1 i,则 1 ()				
Α.	0 B. 1	С. 、	<u>/2</u>	D.	2
2.	已知命题 p: x R, x 1 1; 命	题 q: x	0, x3 x, 贝	IJ (
Α.	p和q都是真命题	В.	p和q都是真命	命题	
С.	p和 ^q 都是真命题	D.	p和 q都是真	命题	
3.	已知向量a,b满足 a 1, a 2b 2,	且 b 2a	b,则 b ()
Α.	$\frac{1}{2}$ B. $\frac{\sqrt{2}}{2}$	C	$\frac{\sqrt{3}}{2}$	D.	1

4. 某农业研究部门在面积相等的 100 块稻田上种植一种新型水稻,得到各块稻田的亩产量(单位: kg)并部分整理下表

亩产量	[900, 950)	[950, 1000)	[1000, 1050)	[1100, 1150)	[1150, 1200)
频数	6	12	18	24	10

据表中数据,结论中正确的是(

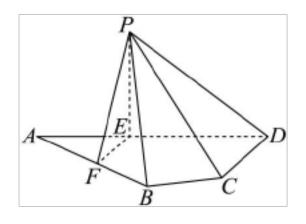
- A. 100 块稻田亩产量的中位数小于 1050kg
- B. 100 块稻田中亩产量低于 1100kg 的稻田所占比例超过 80%

C. 100 块稻田亩产量的极差介于 200kg 至 300kg 之间				
D. 100 块稻田亩产量的平均值介于 900kg 至	至1000kg 之间			
5. 已知曲线 C: x2 y2 16 (y 0),从 C	上任意一点 P 向 x 轴作垂线段 PP , P 为垂足,			
则线段PP 的中点M的轨迹方程为()			
A. $\frac{x_2}{16} \frac{y_2}{4} = 1 (y = 0)$	B. $\frac{x_2}{16} \frac{y_2}{8} = 1 (y 0)$			
C. $\frac{y_2}{16} \frac{x_2}{4} = 1 (y = 0)$	D. $\frac{y_2}{16} \frac{x_2}{8} 1 (y 0)$			
6. 设函数 f(x) a(x 1)2 1, g(x) cosx	2ax, 当x (1,1)时, 曲线 y f(x) 与 y g(x)			
恰有一个交点,则a ()				
A. 1 B. $\frac{1}{2}$	C. 1 D. 2			
7. 已知正三棱台 $ABC - ABC_1$ 的体积为 $\frac{52}{3}$,	AB 6, AB 2,则AA与平面ABC所成角			
的正切值为 ()				
A. $\frac{1}{2}$ B. 1	C. 2 D. 3			
8. 设函数 f(x) (x a) ln x b), 若 f(x)	0,则a2 b2的最小值为()			
A. $\frac{1}{8}$ B. $\frac{1}{4}$	C. $\frac{1}{2}$ D. 1			
二、多项选择题:本大题共 3 小题,每小是	题 6 分, 共 18 分. 在每小题给出的四个选项			
中,有多项符合题目要求.全部选对得 6 分	分,选对但不全的得部分分,有选错的得0分.			
9. 对于函数 f(x) sin2x和 g(x) sin(2 4	, 下列正确的有()			
A. f(x)与g(x)有相同零点	B. f(x)与g(x)有相同最大值			
C. f(x)与g(x)有相同的最小正周期	D. f(x)与g(x)的图像有相同的对称轴			
10. 抛物线 C: y2 4x的准线为 1, P为 C_	上的动点,过P作⊙A:x2 (y 4)2 1的一条切			
线,Q为切点,过P作1的垂线,垂足为B,				
A. 1 与 A 相切	火 切(
TH /V	火 切(
B. 当 P, A, B 三点共线时, PQ √15	火 切(
B. 当 P, A, B 三点共线时, PQ √15				

- A. 当a 1时, f(x)有三个零点
- B. 当a 0时, x 0是 f(x)的极大值点
- C. 存在 a, b, 使得 x b 为曲线 y f(x) 的对称轴
- D. 存在 a, 使得点 ^{1, f 1} 为曲线 ^{y f (x)}的对称中心
- 三、填空题: 本大题共 3 小题, 每小题 5 分, 共 15 分.
- 13. 已知 为第一象限角, 为第三象限角, tan tan 4, tan tan $\sqrt{2}$ 1,则 $\sin($

11	21	31	40
12	22	33	42
13	22	33	43
15	24	34	44

- 四、解答题: 本题共 5 小题,共 77 分. 解答应写出文字说明、证明过程或演算步骤.
- 15. 记 ABC 的内角 A, B, C 的对边分别为 a, b, c, 已知 sinA √3 cosA 2.
- (1)求A.
- (2) 若a 2, $\sqrt{2}$ bsinC csin2B, 求 ABC 的周长.
- 16. 已知函数 f(x) ex ax a3.
- (1) 当 a 1 时, 求曲线 y f(x) 在点 1, f(1) 处的切线方程;
- (2)若 f(x)有极小值,且极小值小于 0,求 a 的取值范围.
- 17. 如图,平面四边形 ABCD中,AB 8,CD 3,AD $5\sqrt{3}$, ADC 90 ,BAD 30, 点 E,F 满足 AE $\frac{2}{5}$ AD ,AF $\frac{1}{2}$ AB ,将 \triangle AEF 沿 EF 对折至! PEF ,使得 PC $4\sqrt{3}$.



(1)证明: EF PD;

(2) 求面 PCD 与面 PBF 所成的二面角的正弦值.

18. 某投篮比赛分为两个阶段,每个参赛队由两名队员组成,比赛具体规则如下:第一阶段由参赛队中一名队员投篮 3 次,若 3 次都未投中,则该队被淘汰,比赛成员为 0 分;若至少投中一次,则该队进入第二阶段,由该队的另一名队员投篮 3 次,每次投中得 5 分,未投中得 0 分. 该队的比赛成绩为第二阶段的得分总和. 某参赛队由甲、乙两名队员组成,设甲每次投中的概率为 p,乙每次投中的概率为 q,各次投中与否相互独立.

(1) 若 p 0.4, q 0.5, 甲参加第一阶段比赛, 求甲、乙所在队的比赛成绩不少于 5 分的概率.

(2)假设⁰ p q,

(i) 为使得甲、乙所在队的比赛成绩为 15 分的概率最大,应该由谁参加第一阶段比赛?

(ii) 为使得甲、乙, 所在队的比赛成绩的数学期望最大, 应该由谁参加第一阶段比赛?

19. 已知双曲线 $C: x_2 y_2 m m 0$, 点 $P_1 5, 4$ 在 C 上, k 为常数, 0 k 1. 按照如下

方式依次构造点 P_n n 2,3,... ,过 $P_{n,1}$ 作斜率为 k 的直线与 C 的左支交于点 $Q_{n,1}$,令 P_n 为 $Q_{n,1}$

关于 y 轴的对称点,记 $^{P}_{n}$ 的坐标为 $^{x}_{n}$, $^{y}_{n}$.

(1) 若k $\frac{1}{2}$, 求 $\frac{x}{2}$, $\frac{y}{2}$;

(2)证明:数列 $_{n}^{X}$ $_{n}^{y}$ 是公比为 $\frac{1}{1}$ $_{k}^{k}$ 的等比数列;

(3)设 S_n 为 $P_{n-1}P_{n-1}P_{n-1}$ 的面积,证明:对任意的正整数n, S_n S_{n-1} .

1. C

【分析】由复数模的计算公式直接计算即可.

【详解】若z 1 i,则
$$|z|$$
 $\sqrt{1^2}$ $\sqrt{2}$.

故选: C.

2. B

【分析】对于两个命题而言,可分别取 x= 1、x 1, 再结合命题及其否定的真假性相反即可得解.

【详解】对于 p 而言,取 x 1,则有 x 1 0 1,故 p 是假命题, p 是真命题,

对于 q 而言,取 $_{x}$ 1,则有 $_{x_{3}}$ 1 $_{3}$ 1 $_{x}$,故 q 是真命题, q 是假命题,

综上, p和 q都是真命题.

故选: B.

3. B

【分析】由 b 2a b 得 b² 2a b ,结合 a 1,a 2b 2 ,得 1 4a b 4b² 1 6b² 4,由此即可得解.

【详解】因为 b 2a b, 所以 b 2a b 0, 即 b² 2a b,

又因为 |a| 1, |a 2b| 2,

所以1 4a b 4b² 1 6b² 4,

从而 $\left|\mathbf{b}\right| \frac{\sqrt{2}}{2}$.

故选: B.

4. C

【分析】计算出前三段频数即可判断 A; 计算出低于 1100kg 的频数, 再计算比例即可判断 B; 根据极差计算方法即可判断 C; 根据平均值计算公式即可判断 D.

【详解】对于 A, 根据频数分布表可知, 6 12 18 36 50,

所以亩产量的中位数不小于 1050kg, 故 A 错误;

对于 B, 亩产量不低于1100kg 的频数为 24 10 34,

所以低于 $^{1100 \text{kg}}$ 的稻田占比为 $^{100 34}_{100}$ 66%,故B错误;

对于 C, 稻田亩产量的极差最大为1200 900 300, 最小为1150 950 200, 故 C 正确;

对于 D,由频数分布表可得,亩产量在 [1050,1100 的频数为 100 (6 12 18 24 10) 30,所以平均值为 $\frac{1}{100}$ (6 925 12 975 18 1025 30 1075 24 1125 10 1175) 1067 ,故 D 错误.

故选; C.

5. A

【分析】设点 M (x, y), 由题意, 根据中点的坐标表示可得 P (x, 2 y), 代入圆的方程即可求解.

【详解】设点M (x,y),则P(x,y),P(x,0),

因为M 为PP 的中点,所以 y_0 2y,即P(x, 2y),

又 P 在圆 x2 y2 16(y 0)上,

所以 x_2 $4y_2$ 16(y 0), 即 $\frac{x_2}{16}$ $\frac{y_2}{4}$ 1(y 0),

即点 M 的轨迹方程为 $\frac{x_2}{16}$ $\frac{y_2}{4}$ 1(y 0).

故选: A

6. D

【详解】解法一: 令 f(x) g x , 即 a(x 1)2 1 cosx 2ax , 可得 ax2 a 1 cosx , 令 F x ax2 a 1, G x cosx ,

原题意等价于当x (1,1)时,曲线y F(x)与y G(x)恰有一个交点,

注意到F x ,G x 均为偶函数,可知该交点只能在 y 轴上,

可得F 0 G 0, 即a 1 1, 解得a 2,

若a 2, 令F x G x, 可得2x2 1 cosx 0

因为 $x = 1, 1, \quad \text{则} 2x_2 = 0, 1 \cos x = 0, \quad \text{当且仅当 } x = 0 \text{ 时,等号成立,}$

可得2x2 1 cosx 0, 当且仅当x 0时, 等号成立,

则方程 $2x_2$ 1 $\cos x$ 0 有且仅有一个实根 0,即曲线 y F (x) 与 y G (x) 恰有一个交点,所以 a 2 符合题意;

综上所述: a 2.

原题意等价于h x 有且仅有一个零点,

因为 h x a x 2 a 1 cos x ax $_2$ a 1 cos x h x ,

则h x 为偶函数,

根据偶函数的对称性可知h x 的零点只能为0,

即h 0 a 2 0,解得a 2,

若a 2,则h x 2x2 1 cosx,x 1,1,

又因为 $2x_2$ 0,1 cosx 0当且仅当 x 0时,等号成立,

可得h x 0, 当且仅当 x 0时, 等号成立,

即 h x 有且仅有一个零点 0, 所以 a 2符合题意;

故选: D.

7. B

【分析】解法一:根据台体的体积公式可得三棱台的高h $\frac{4\sqrt{3}}{3}$,做辅助线,结合正三棱台的结构特征求得 AM $\frac{4\sqrt{3}}{3}$,进而根据线面夹角的定义分析求解;解法二:将正三棱台 ABC -A B C $_1$ 补成正三棱锥 P ABC ,A A 与平面 ABC 所成角即为 PA 与平面 ABC 所成角,根据比例关系可得 $V_{_{P-ABC}}$ 18,进而可求正三棱锥 P ABC 的高,即可得结果.

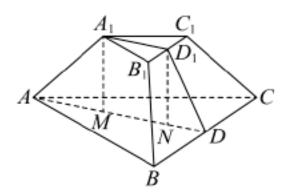
【详解】解法一:分别取 BC, B, C, 的中点 D, D, ,则 AD =
$$3\sqrt{3}$$
, A, D, = $\sqrt{3}$,

可知S
$$\frac{1}{2}$$
 6 6 $\frac{\sqrt{3}}{2}$ 9 $\sqrt{3}$,S $\frac{1}{2}$ 2 $\sqrt{5}$,

设正三棱台 $ABC - A_1B_1C_1$ 的为 h,

则
$$V_{ABC A_1B_1C_1} = \frac{1}{3} 9\sqrt{3} \sqrt{3} \sqrt{3} \sqrt{3} \sqrt{3} h = \frac{52}{3}$$
,解得h $\frac{4\sqrt{3}}{3}$,

如图,分别过 $_{1}^{A}$, $_{1}^{D}$ 作底面垂线,垂足为 $_{1}^{M}$, $_{1}^{N}$,设AM x,



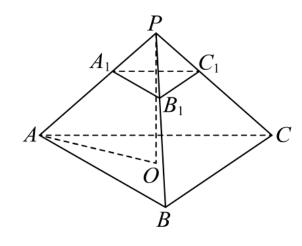
则
$$AA_1 = \sqrt{AM_2 + A_1M_2} = \sqrt{x_2 + \frac{16}{3}}$$
, $DN = AD - AM - MN = 2\sqrt{3} - x$, 可得 $DD_1 \sqrt{DN_2 D_1N_2} \sqrt{2\sqrt{3} x^2 \frac{16}{3}}$,

结合等腰梯形 BCC B_1 可得 $BB_{\frac{2}{1}}$ $\frac{6}{2}$ $\frac{2}{2}$ $DD_{\frac{2}{1}}$,

即
$$x^2$$
 $\frac{16}{3}$ $2\sqrt{3}$ x^2 $\frac{16}{3}$ 4,解得 x $\frac{4\sqrt{3}}{3}$,

所以 A_1A 与平面ABC所成角的正切值为 $tap_1AD = \frac{AM}{AM} = 1$;

解法二:将正三棱台 ABC $^{-}$ ABC $^{-}$ 补成正三棱锥 P ABC ,



则AA与平面ABC所成角即为PA与平面ABC所成角,

因为
$$\frac{PA}{PA^{1}}$$
 $\frac{AB}{AB^{1}}$ $\frac{1}{3}$, 则 $\frac{V}{V_{PARC}}$ $\frac{1}{27}$,

可知
$$V_{ABC}$$
 $A_1B_1C_1$ $\frac{26}{27}$ V_{PABC} $\frac{52}{3}$, 则 V_{PABC} 18,

设正三棱锥 P ABC 的高为d ,则 $V_{P ABC}$ $\frac{1}{3}$ d $\frac{1}{2}$ 6 6 $\frac{\sqrt{3}}{2}$ 18 ,解得 d $2\sqrt{3}$,

取底面 ABC 的中心为0,则PO 底面 ABC,且 AO $2\sqrt{3}$,

所以 PA 与平面 ABC 所成角的正切值 $\tan PAO = \frac{PO}{AO} = 1$.

故选: B.

8. C

【分析】解法一: 由题意可知: f(x)的定义域为 b, ,分类讨论 a 与 b, 1 b 的大小关

系,结合符号分析判断,即可得b a 1,代入可得最值;解法二:根据对数函数的性质分析 ln k b)的符号,进而可得 x a 的符号,即可得 b a 1,代入可得最值.

【详解】解法一: 由题意可知: f(x)的定义域为 b, ,

令 x a 0解得 x a; 令 ln (x b) 0解得 x 1 b;

若 a b, 当x b, 1 b 时, 可知x a 0, lnx b 0,

此时 f(x) 0, 不合题意;

若 b a 1 b, 当 x a, 1 b 时, 可知 x a 0, ln x b 0,

此时 f (x) 0, 不合题意;

若 a 1 b, 当 x b, 1 b 时, 可知 x a 0, $\ln x$ b 0, 此时 f(x) 0;

当x 1 b, 时,可知x a 0, lnx b 0, 此时 f(x) 0;

可知若 a 1 b,符合题意;

若 a 1 b, 当x 1 b, a 时, 可知x a 0, lnx b 0,

此时 f(x) 0, 不合题意;

综上所述: a 1 b, 即b a 1,

则 a_2 b_2 a_2 a 1^2 2 a $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$, 当且仅当 a $\frac{1}{2}$, 为 $\frac{1}{2}$ 时,等号成立,

所以 a_2 b_2 的最小值为 $\frac{1}{2}$;

解法二: 由题意可知: f(x)的定义域为 b, ,

令 x a 0解得 x a; 令 ln (x b) 0解得 x 1 b;

则当x b,1 b 时, $\ln x$ b 0, 故x a 0, 所以1 b a 0;

x 1 b, 时, ln x b 0, 故 x a 0, 所以1 b a 0;

故1 b a 0, 则a2 b2 a2 a 12 2 a $\frac{1}{2}$ $\frac{2}{2}$ $\frac{1}{2}$,

当且仅当 a $\frac{1}{2}$, b $\frac{1}{2}$ 时,等号成立,

所以 a_2 b_2 的最小值为 $\frac{1}{2}$.

故选: C.

【点睛】关键点点睛:分别求 x a 0、ln (x b) 0的根,以根和函数定义域为临界,比较大小分类讨论,结合符号性分析判断.

9. BC

【分析】根据正弦函数的零点,最值,周期公式,对称轴方程逐一分析每个选项即可.

【详解】A 选项, 令 f(x) sin2x 0, 解得 x $\frac{k\pi}{2}$, k Z, 即为 f(x)零点,

令 g(x) $\sin(2 \frac{\pi}{4})$ 0,解得 x $\frac{k\pi}{2} \frac{\pi}{8}$, k Z,即为 g(x)零点,

显然 f(x),g(x) 零点不同, A 选项错误;

B 选项,显然 f(x) g(x) 1, B 选项正确;

C 选项,根据周期公式, f(x),g(x)的周期均为 $\frac{2\pi}{2}$ π , C 选项正确;

D选项,根据正弦函数的性质 f(x) 的对称轴满足 $2x k\pi \frac{\pi}{2} x \frac{k\pi}{2} \frac{\pi}{4}$, k Z,

g(x)的对称轴满足2x $\frac{\pi}{4}$ $k\pi$ $\frac{\pi}{2}$ x $\frac{k\pi}{2}$ $\frac{3\pi}{8}$, k Z,

显然 f(x),g(x) 图像的对称轴不同, D 选项错误.

故选: BC

10. ABD

【分析】A 选项,抛物线准线为 x=1,根据圆心到准线的距离来判断;B 选项,P,A,B= 点共线时,先求出 P 的坐标,进而得出切线长;C 选项,根据 PB 2 先算出 P 的坐标,然后验证 k_{PA-AB} 1 是否成立;D 选项,根据抛物线的定义,PB PF ,于是问题转化成 PA PF 的 P 点的存在性问题,此时考察 P 的中垂线和抛物线的交点个数即可,亦可直接设 P 点坐标进行求解.

【详解】A 选项, 抛物线 y2 4x 的准线为 x= 1,

A 的圆心(0,4)到直线 x=1的距离显然是1,等于圆的半径,

故准线1和 A相切,A选项正确;

B选项, P,A,B 三点共线时, 即 PA 1, 则 P 的纵坐标 y_{p} 4,

由 y_2 $4x_P$, 得到 x_P 4, 故 P(4,4),

此时切线长|PQ| $\sqrt{|PA|^2 r_2}$ $\sqrt{4_2 l_2}$ $\sqrt{15}$, B 选项正确;

C 选项, 当 |PB| 2 时, x_{P} 1, 此时 y_{P} 4x, 故 P(1,2) 或 P(1,2) ,

不满足 $_{PA}^{k}$ $_{AB}^{k}$ $_{AB}^{1}$;

当 P (1, 2) 时, A (0,4), B (1,2),
$$k_{PA} = \frac{4(2)}{01} = 6$$
, $k_{AB} = \frac{4(2)}{0(1)} = 6$,

不满足 $_{PA}^{k}$ $_{AB}^{k}$ $_{1}$;

于是PA AB 不成立, C选项错误;

D选项,方法一:利用抛物线定义转化

根据抛物线的定义, |PB| |PF|, 这里F(1,0),

于是|PA| |PB|时 P点的存在性问题转化成|PA| |PF|时 P点的存在性问题,

$$A(0,4),F(1,0)$$
, AF 中点 $\frac{1}{2},2$, AF 中垂线的斜率为 $\frac{1}{k}$ $\frac{1}{4}$,

于是AF 的中垂线方程为: $y = \frac{2x + 15}{8}$, 与抛物线 $y_2 = 4x$ 联立可得 $y_2 = 16y = 30 = 0$,

162 4 30 136 0,即AF的中垂线和抛物线有两个交点,

即存在两个P点,使得|PA| |PF|,D选项正确.

方法二: (设点直接求解)

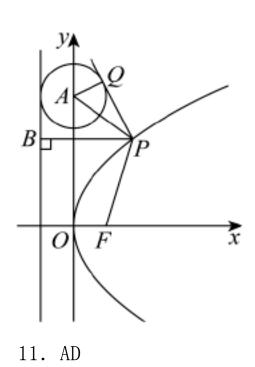
设 $P = \frac{t_2}{4}$, t , 由PB 1可得B 1, t , 又A(0,4), 又|PA| |PB|,

根据两点间的距离公式, $\sqrt{\frac{t_4}{16}}$ (t 4)₂ $\frac{t_2}{4}$ 1,整理得 t_2 16t 30 0,

16₂ 4 30 136 0,则关于t的方程有两个解,

即存在两个这样的P点,D选项正确.

故选: ABD



【分析】A 选项,先分析出函数的极值点为 x=0,x=a,根据零点存在定理和极值的符号判断出 f(x)在 (1,0),(a,2a)上各有一个零点; B 选项,根据极值和导函数符号的关系进行分析; C 选项,假设存在这样的 a,b,使得 x=b 为 f(x) 的对称轴,则 f(x)=f(2b=x) 为恒等式,据此计算判断; D 选项,若存在这样的 a,使得 $(1,3\ 3a)$ 为 f(x) 的对称中心,则 f(x)=f(2-x)=6-6a,据此进行计算判断,亦可利用拐点结论直接求解.

【详解】A选项, f(x) 6x2 6ax 6x(x a), 由于a 1,

故 x , 0 a, 时 f (x) 0, 故 f (x) 在 , 0, a, 上单调递增,

x (0,a) 时, f(x) 0, f(x) 单调递减,

则 f(x) 在 x 0 处取到极大值, 在 x a 处取到极小值,

由 f(0) 1 0, f(a) 1 a_3 0, 则 f(0) f(a) 0,

根据零点存在定理 f(x)在(0,a)上有一个零点,

又 f(1) 1 3a 0, f(2a) $4a_3$ 1 0, 则 f(1) f(0) 0, f(a) f(2a) 0,

则 f(x) 在 (1,0),a(2a) 上各有一个零点,于是 a 1时, f(x) 有三个零点,A 选项正确;

B选项, f(x) 6x(x a), a<0时, x (a,0),f(x) 0, f(x)单调递减,

x (0,)时 f(x) 0, f(x)单调递增,

此时 f(x) 在 x 0 处取到极小值, B 选项错误;

C 选项,假设存在这样的a,b,使得x b 为 f(x) 的对称轴,

即存在这样的a,b使得f(x) f(2b x),

根据二项式定理,等式右边 $(2b x)_3$ 展开式含有 x_3 的项为 $2C_{\frac{3}{3}}(2b)_0(x)_3 2x_3$,

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问: https://d.book118.com/72704120004
2010005