管理类联考《199 管理类联考综合能力》历年考研真题详解

目录

2009 年管理类联考《199 管理类联考综合能力》真题及详解 2010年管理类联考《199管理类联考综合能力》真题及详解 2011 年管理类联考《199 管理类联考综合能力》真题及详解 2012年管理类联考《199管理类联考综合能力》真题及详解 2013 年管理类联考《199 管理类联考综合能力》真题及详解 2014年管理类联考《199管理类联考综合能力》真题及详解 2015 年管理类联考《199 管理类联考综合能力》真题及详解 2016年管理类联考《199管理类联考综合能力》真题及详解 2017年管理类联考《199管理类联考综合能力》真题及详解 2018年管理类联考《199管理类联考综合能力》真题及详解 2019 年管理类联考《199 管理类联考综合能力》真题及详解 2020年管理类联考《199管理类联考综合能力》真题及详解

内容简介

本书是管理类联考《199 管理类联考综合能力》历年考研真题详解,根据 2020 年考 试大纲的要求及相关教材对 2009~2020 年考试真题进行了详细解析。历年真题为考生提供了最好的复习依据,便于考生了解考题的命题特点和出题规律,答案详解则为考生分析了解题技巧,指明了解题思路。

资料下载地址: ://acme.100xuexi /Ebook/991019.html

来源: 【弘博学习网】或关注【hbky96】获取更多学习资料。

- 一、问题求解(第1~15小题,每小题3分,共45分。下列每题给出的A、
- B、C、D、E 五个选项中,只有一项是符合试题要求的)
- 1一家商店为回收资金把甲乙两件商品均以 480 元一件卖出。已知甲商品赚了 20%,乙商品亏了 20%,则商店盈亏结果为 ()。
- A. 不亏不赚
- B. 亏了50元
- C. 赚了50元
- D. 赚了40元
- E. 亏了40元

【答案】E查看答案

【解析】考查算术概念的掌握。甲乙商品卖出共获得 480×2=960 (元) ,甲商品成本为: 480/(1+20%) = 400 (元) ,乙商品成本为: 480/(1-20%) = 600 (元) ,而 960 - 400 - 600 = -40 (元) ,因此亏了 40 元。

2 某国参加北京奥运会的男女运动员比例原为 19:12。由于先增加若干名女运动员, 使男女运动员比例变为 20:13, 后又增加了若干名男运动员, 于是男女运动员比例最终变为 30:19。如果后增加的男运动员比先增加的女运动员多 3 人,则最后运动员的总人数为()。

- A. 686
- B. 637
- C. 700
- D. 661
- E. 600

【答案】B 查看答案

【解析】假设原先男女运动员分别为 x 人和 y 人,增加的女运动员为 w 人,增加的男运动员为 z 人,则:

由男女运动员比例原为 19:12 得: x/y = 19/12, 即 x = 19y/12;

增加若干名女运动员,使男女运动员比例变为 20:13,则 x/(y+w) = 20/13,将 x = 19y/12代入得 w = 7y/240;

又增加了若干名男运动员,于是男女运动员比例最终变为 30:19,则

$$\frac{x+z}{v+w} = \frac{30}{19}$$

即

$$\frac{\frac{19}{12}y + z}{y + \frac{7y}{240}} = \frac{30}{19}$$

即 z = y/24。

又由题意得 z - w = 3, 即

$$\frac{1}{24}y - \frac{7}{240}y = 3$$

则 y = 240。

所以,最后运动员的总人数为

$$x + y + w + z = \frac{19}{12}y + y + \frac{7}{240}y + \frac{1}{24}y = 637$$

3 某工厂定期购买一种原料,已知该厂每天需用该原料 6 吨,每吨价格 1800元。原料的保管等费用平均每吨 3 元,每次购买原料支付运费 900 元,若该厂要使平均每天支付的总费用最省,则应该每()天购买一次原料。

A. 11

- B. 10
- C. 9
- D. 8
- E. 7

【答案】B 查看答案

【解析】考查代数的思想以及不等式的计算和均值不等式等定理的熟练度。设每 n 天购买一次原料,则: 厂房使用费用为 6n×1800,保管等费用为 6×3[n+(n-1)+...+1], 运费为 900。因此平均每天费用为 6×1800+9+9n+900/n。根据平均值定理 9n+900/n≥2(9n·900/n)0.5,当且仅当 9n=900/n,即 n=10 时费用最少。

4 在某实验中,三个试管各盛水若干克。现将浓度为 12%的盐水 10 克倒入 A 管中,混合后,取 10 克倒入 B 管中,混合后再取 10 克倒入 C 管中,结果 A、B、C 三个试管中盐水的浓度分别为 6%、2%、0.5%,那么三个试管中原来盛水最多的试管及其盛水量各是(

- A. A 试管, 10克
- B. B 试管, 20克
- C. C试管, 30克
- D. B 试管, 40 克
- E. C试管, 50克

【答案】C查看答案

【解析】A 试管中: 现盐水浓度为 6%, 原来浓度为 12%, 故 A 管原来所盛水的质量等于加入盐水的质量, 即为 10g。

B 试管中: 浓度由 6%变为 2%, 缩小 3 倍, 因此 B 管中原来盛水质量为 20g。

C 试管中:浓度由 2%变为 0.5%,缩小 4倍,因此 C 管中原来盛水质量为 30g。

5 一艘轮船往返航行于甲、乙两码头之间,设船在静水中的速度不变,则当这条河的水流速度增加 50%时,往返一次所需的时间比原来将()。

- A. 增加
- B. 减少半个小时
- C. 不变
- D. 减少1个小时
- E. 无法判断

【答案】A 查看答案

【解析】由于船在静水中的速度、水流速度、往返路程皆为未知量,故要计算 出具体的量化结果是不可能的,但能进行定性分析。

可设水流速度为 u, 船在静水中的速度为 v, 往返路程为 2s。

则水流速度改变前往返一次所需时间为

$$t_1 = \frac{s}{v+u} + \frac{s}{v-u} = \frac{2vs}{v^2 - u^2}$$

水流速度改变后往返一次所需时间为

$$t_2 = \frac{s}{v+1.5u} + \frac{s}{v-1.5u} = \frac{2vs}{v^2 - (1.5u)^2}$$

则水流速度 u 增加后 t 的分母减小, 故 t 增大, 故往返一次所需的时间比原来增加。

D.
$$x = -3$$
 或 $x = 5/3$

E. 不存在

【答案】C查看答案

【解析】此题较为特殊,若直接解绝对值方程则有四种不同情况需要讨论,过于繁琐,占用时间较长。由于选项中只有±3、±5、±1、±5/3,故分别代入方程直接验证更为简便。

73x2+bx+c=0 (c≠0) 的两个根为α、β。如果又以α+β、αβ为根的一元二次方程是 3x2-bx+c=0。则 b 和 c 分别为 ()。

A. 2, 6

B. 3, 4

C. -2, -6

D. -3, -6

E. 以上结论均不正确

【答案】D查看答案

【解析】考查代数方程中根与方程的关系。对于一元二次方程的两个根为 ax2 + bx + c = 0 的两个根为 x1、x2,由韦达定理得 x1 + x2 = - b/a, x1x2 = c/a, 因此由题中所给条件可得:

$$\begin{cases} \alpha + \beta = -\frac{b}{3} \\ \alpha \beta = \frac{c}{3} \\ \alpha + \beta + \alpha \beta = \frac{b}{3} \end{cases} \Rightarrow \begin{cases} b = -3 \\ c = -6 \end{cases}$$
$$(\alpha + \beta)\alpha\beta = \frac{c}{3}$$

8若 (1+x) + (1+x) 2+...+ (1+x) n=a1 (x-1) +2a2 (x-1) 2+... +nan (x-1) n, 则 a1+2a2+3a3+...+nan= ()。

- A. (3n 1) / 2
- B. (3n+1-1)/2
- C. (3n+1-3)/2
- D. (3n 3) / 2
- E. (3n 3) / 4

【答案】C查看答案

【解析】由于求的是多项式的各项系数和,故令等式右侧多项式的各量为 1 即可,令 x-1=1 即 x=2,代入等式两边即可得 $a_1+2a_2+3a_3+...+na_n=3+32+33+...+3n=(3n+1-3)/2。$

9在36人中,血型情况如下: A型12人,B型10人,AB型8人,O型6人。若从中随机选出两人,则两人血型相同的概率是()。

- A. 77/315
- B. 44/315
- C. 33/315
- D. 9/122
- E. 以上结论均不正确

【答案】A查看答案

【解析】从 36 人中随机抽取两人的总情况数为 C362。两人血型相同的情况数为: C122 + C102 + C82 + C62, 故两人血型相同的概率为 P = (C122 + C102 + C82 + C62) / C362 = 77/315。

10 湖中有四个小岛,它们的位置恰好近似构成正方形的四个顶点。若要修建三座桥将这四个小岛连接起来,则不同的建桥方案有() 种。

- A. 12
- B. 16
- C. 13
- D. 20
- E. 24

【答案】B 查看答案

【解析】正方形四个顶点两两连线共有 C42 = 6 条线,即四个小岛每两个小岛修一座桥,共可修 6 座桥。任取 3 条共有 C63 = 20 种取法。减去 4 种无法将 4 个岛连接的情况(只能将四个顶点中的三个连接的情况),共有 C63 - 4 = 16 (种)。

11 若数列{an}中, an≠0 (n≥1), a1 = 1/2, 前 n 项和 Sn 满足

$$a_n = \frac{2S_n^2}{2S_n - 1} (n \ge 2)$$

则
$$\left\{\frac{1}{S_n}\right\}$$
 是 ()。

A. 首项为 2, 公比为 1/2 的等比数列

B. 首项为 2, 公比为 2 的等比数列

C. 既非等差也非等比数列

D. 首项为 2, 公差为 1/2 的等差数列

E. 首项为 2, 公差为 2 的等差数列

【答案】E 查看答案

【解析】本题归为数列类题型,考查数列中通项与求和公式的关系,即 an = Sn - Sn - 1,因此

$$S_n - S_{n-1} = \frac{2S_n^2}{2S_n - 1} (n \ge 2)$$

所以 (Sn - Sn - 1) (2Sn - 1) = 2Sn2, 即: Sn + 2SnSn - 1 - Sn - 1 = 0, 两边除以 Sn - 1Sn, 得到

$$\frac{1}{S_n} - \frac{1}{S_{n-1}} = 2$$

又

$$\frac{1}{S_1} = \frac{1}{a_1} = 2$$

$$\begin{cases} \frac{1}{S_n} \\ \\ \text{所以} \end{cases}$$
 是首项为 2,公差为 2 的等差数列。

12 直角三角形 ABC 的斜边 AB = 13 厘米, 直角边 AC = 5 厘米, 把 AC 对折到 AB 上去与斜边相重合, 点 C 与点 E 重合, 折痕为 AD (如图 1),则图中阴影部分的面积为()。

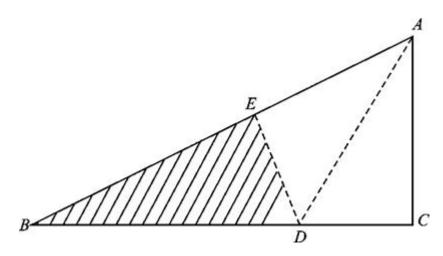


图 1

- A. 20
- B. 40/3
- C. 38/3
- D. 14
- E. 12

【答案】B查看答案

【解析】由对称性可知 AD 为∠A 的角平分线,因此 AB/AC = BC/DC,所以 DC = (5/18) ×12 = 10/3,S _{阴影} = S_{ABC} - 2S_{ADC} = 30 - 50/3 = 40/3。

13 设直线 nx + (n + 1) y = 1 (n 为正整数) 与两坐标轴围成的三角形面积

Sn,
$$n = 1, 2, ..., 2009, \mathbb{Q} S1 + S2 + ... + S2009 = () ...$$

- A. (1/2) ×2009/2008
- B. (1/2) ×2008/2009
- C. (1/2) ×2009/2010
- D. (1/2) ×2010/2009
- E. 以上结论都不正确

【答案】C查看答案

【解析】本题实际上是以平面解析几何为载体,综合考查了包括数列在内的知

识。直线 nx + (n + 1) y = 1 与坐标轴围成的面积为

$$S_n = \frac{1}{2} \times \frac{1}{n} \times \frac{1}{n+1} = \frac{1}{2} \times \left(\frac{1}{n} - \frac{1}{n+1}\right)$$

因此有

$$\begin{split} S_1 + S_2 + \dots + S_{2009} &= \frac{1}{2} \left(1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \dots + \frac{1}{2009} - \frac{1}{2010} \right) \\ &= \frac{1}{2} \left(1 - \frac{1}{2010} \right) = \frac{1}{2} \times \frac{2009}{2010} \end{split}$$

14 若圆 C: (x+1) 2+ (y-1) 2=1与x轴交于A点、与y轴交于B点,则与此圆相切于劣弧 AB中点 C (注:小于半圆的弧称为劣弧)的切线方程是()。

A.
$$y = x + 2 - \sqrt{2}$$

$$y = x + 1 - \frac{1}{\sqrt{2}}$$

$$y = x - 1 + \frac{1}{\sqrt{2}}$$

D.
$$y = x - 2 + \sqrt{2}$$

$$y = x + 1 - \sqrt{2}$$

【答案】A查看答案

【解析】考查平面解析几何,要灵活运用图中的比例及长短关系得出截距。由题意得图 2。

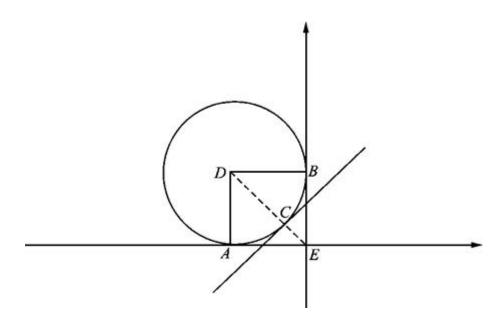


图 2

则可得:

$$DE = \sqrt{2}$$

٠.

$$CE = \sqrt{2} - 1$$

因此直线在 Y 轴上截距是

$$\left(\sqrt{2}-1\right)\sqrt{2}=2-\sqrt{2}$$

又由 AB 的斜率为 1,可得直线方程为

$$y = x + 2 - \sqrt{2}$$

15 已知实数 a, b, x, y 满足

$$y + \left| \sqrt{x} - \sqrt{2} \right| = 1 - a^2$$

和
$$|x-2|=y-1-b2$$
,则 $3x+y+3a+b=($)。

- A. 25
- B. 26
- C. 27
- D. 28
- E. 29

【答案】D查看答案

【解析】将

$$y + \left| \sqrt{x} - \sqrt{2} \right| = 1 - a^2$$

$$|x - 2| = y - 1 - b_2$$

两式相加得到:

$$\left| \sqrt{x} - \sqrt{2} \right| + \left| x - 2 \right| = -\left(a^2 + b^2 \right) \ge 0$$

(两个绝对值相加不可能为负)

可得 a = b = 0,则

$$\left|\sqrt{x} - \sqrt{2}\right| + \left|x - 2\right| = 0$$

即 x = 2。

$$y + \left| \sqrt{x} - \sqrt{2} \right| = 1 - a^2$$

可得到 y = 1, 故 x + y = 3。

因此 3x+y+3a+b=28。

- 二、条件充分性判断(第 16 题~25 小题,每小题 3 分,共 30 分,要求判断 每题给出的条件(1)和(2)能否充分支持题干所陈述的结论。A、B、C、D、E 五个选项中,只有一项是符合试题要求的)
- A. 条件(1)充分,但是(2)不充分
- B. 条件(2)充分,但是(1)不充分
- C. 条件 (1) 和 (2) 单独不充分, 但条件 (1) 和 (2) 联合起来充分
- D. 条件 (1) 充分, 条件 (2) 也充分
- E. 条件 (1) 和 (2) 单独不充分, 条件 (1) 和 (2) 联合起来也不充分

$$16a_{12} + a_{22} + a_{32} + ... + a_{n2} = (4n - 1) /3.$$
 ()

- (1) 数列{an}的通项公式为 an = 2n;
- (2) 在数列{an}中,对任意正整数 n,有 a1 + a2 + a3 + ... + an = 2n 1。

【答案】B 查看答案

【解析】条件(1): an2 = 22n = 4n, ∴a12 + a22 + a32 + ... + an2 = 4 + 42 + 43 + ... + 4n≠ (4n - 1) /3 不满足结论,故条件(1)不充分;

条件 (2) : 由条件得 an = 2n - 1, 从而 an2 = 22n - 2, 即 a12 + a22 + a32 + ... + an2 = 1 + ... + 4n - 1 = (4n - 1) /3, 故条件 (2) 充分。

17A 企业的职工人数今年比前年增加了 30%。()

- (1) A 企业的职工人数去年比前年减少了 20%;
- (2) A企业的职工人数今年比去年增加了50%。

【答案】E查看答案

【解析】条件(1)和条件(2)均只给出了连续两年间的职工人数关系,并未给出今年和前年的职工人数的关系,显然单独均不成立,即条件(1)、(2)均不充分。

条件 (1) 和条件 (2) 同时成立时,假设前年是 α ,则去年是 0.8α ,今年是 0.8α × (1+50%) = 1.2α ,即今年比前年增加了 20%,同样是不充分的,即 条件 (1) 、 (2) 联合起来也不充分。

 $18|\log_{a}x| > 1.$ ()

- (1) $x \in [2, 4], 12 < a < 1;$
- (2) $x \in [4, 6], 1 < a < 2$.

【答案】D查看答案

【解析】要使 logax > 1,只需满足 logax > 1 或 logax < - 1 即可。

条件(1):满足 logax < -1, 故条件(1) 充分;

条件(2):满足 logax > 1,故条件(2)也充分。

$$\frac{ax+7}{bx+11}$$
 有意义的一切 x 的值,这个分式为一个定值。()

- (1) 7a 11b = 0;
- (2) 11a 7b = 0.

【答案】B查看答案

【解析】条件(1): a=11b/7, 代入得

$$\frac{ax+7}{bx+11} = \frac{\frac{11b}{7}x+7}{bx+11}$$

显然不是一个定值, 故条件 (1) 不充分;

条件 (2): b=11a/7, 代入得

$$\frac{ax+7}{bx+11} = \frac{ax+7}{\frac{11a}{7}x+11} = \frac{7}{11}$$

是个定值,故条件(2)充分。

$$\frac{a^2 - b^2}{19a^2 + 96b^2} = \frac{1}{134}$$

(1) a, b均为实数,且|a2-2|+ (a2-b2-1)2=0;

(2) a, b均为实数,且
$$\frac{a^2b^2}{a^4-2b^4}=1$$
 .

【答案】D查看答案

【解析】可以将条件中的已知式子代入结论中去进行检验。

$$\begin{cases} a^2 = 2 \\ b^2 = 1 \end{cases}$$

有

$$\frac{a^2 - b^2}{19a^2 + 96b^2} = \frac{1}{134}$$

满足题干结论,故充分;

条件(2):由于

$$\frac{a^2b^2}{a^4 - 2b^4} = 1$$

则 $a_2b_2 = a_4 - 2b_4$,即 $(a_2 - 2b_2) \times (a_2 + b_2) = 0$ 。

∴
$$a_2 = 2b_2$$

: .

$$\frac{a^2 - b^2}{19a^2 + 96b^2} = \frac{1}{134}$$

满足题干结论,故充分。

$$2a^{2} - 5a - 2 + \frac{3}{a^{2} + 1} = -1$$
 ()

- (1) a 是方程 x2 3x + 1 = 0 的根;
- (2) |a| = 1.

【答案】A查看答案

【解析】条件(1): 因为 a 是方程 x2 - 3x + 1 = 0 的根,则有 a2 - 3a + 1 = 0,则

$$2a^{2} - 5a - 2 + \frac{3}{a^{2} + 1} = 2(a^{2} - 3a + 1) + a - 4 + \frac{3}{3a}$$
$$= \frac{a^{2} - 3a + 1 - a}{a} = -1$$

满足题干结论, 故充分;

条件(2): |a|=1 即把 a=±1 代入题干中等式左边,有-7/2 和13/2 两个结果,故不充分。

- 22 点 (s, t) 落入圆 (x-a) 2+ (y-a) 2=a2内的概率是 1/4。 ()
 - (1) s, t 是连续掷一枚骰子两次所得到的点数, a=3;
 - (2) s, t 是连续掷一枚骰子两次所得到的点数, a=2。

【答案】B 查看答案

【解析】由于掷骰子所得点数均为整数,故本题采用"穷举法"对于概率类题型并不会过于繁琐。

条件 (1): a=3, 点 (s, t)的所有可能值中有 (1, 6), (2, 6), (3,

6), (4, 6), (5, 6), (6, 1), (6, 2), (6, 3), (6, 4),

(6, 5), (6, 6) 共 11 种情况不符合条件,落入圆内的概率为 1 - 11/36 = 25/36,与题干结论不符,故不充分;

条件(2): a=2, 点(s, t)的所有可能值中满足条件的只有(1, 1),

(1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 3)

2) , (3, 3) 共 9 种, 故落入圆内的概率为 9/36 = 1/4, 满足题干结论, 故充分。

23
$$(x_2 - 2x - 8)$$
 $(2 - x)$ $(2x - 2x_2 - 6) > 0$. ()

- $(1) x \in (-3, -2)$;
- (2) $x \in [2, 3]$.

【答案】E 查看答案

【解析】此题有些反常,不是由给出的条件(1)或(2)推出结论,而是由已给结论推出条件,因为解不等式的过程中每一步必可逆,必然构成充要关系,可以反推回去。

$$2x - 2x^2 - 6 = -2\left(x - \frac{1}{2}\right)^2 - \frac{11}{2} < 0$$

必然成立,因此(x2-2x-8)(2-x)(2x-2x2-6)>0只需满足(x2-2x-8)(2-x)=(x-4)(x+2)(2-x)<0即可,解得x>4或-2<x<2。因此可知条件(1)不充分,条件(2)也不充分。

24 圆 (x - 1) 2 + (y - 2) 2 = 4 和直线 (1 + 2λ) x + (1 - λ) y - 3 - 3λ = 0 相交于两点。 ()

$$\lambda = \frac{2\sqrt{3}}{5};$$

$$\lambda = \frac{5\sqrt{3}}{2}$$

【答案】D查看答案

【解析】直线与圆有两个交点时,圆心到直线的距离 d 必须小于半径长度。即

$$\frac{\left|1\times(1+2\lambda)+2\times(1-\lambda)-3-3\lambda\right|}{\sqrt{\left(1+2\lambda\right)^2+\left(1-\lambda\right)^2}}<2$$

解得λ∈R, 即λ可取任意实数。故条件(1)、(2)都充分。

25{an}的前 n 项和 Sn 与{bn}的前 n 项和 Tn 满足 S19:T19 = 3:2。 ()

- (1) {an}和{bn}是等差数列;
- (2) $a_{10}:b_{10}=3:2$

【答案】C查看答案

【解析】条件(1)只给出两数列的性质,并未给出相应数值间的关系,无法推出结论,故不充分;

条件(2)只给出了两数列中的某一项之间的关系,但既没给出两数列的性质,也未给其余数值之间的关系,故无法满足题干结论,所以不充分;

若条件(1)和条件(2)同时成立,则根据等差数列的性质有

$$\frac{S_{19}}{T_{19}} = \frac{\frac{a_1 + a_{19}}{2}}{\frac{b_1 + b_{19}}{2}} = \frac{a_{10}}{b_{10}} = \frac{3}{2}$$

满足题干结论,所以条件(1)、(2)联合起来充分。

- 三、逻辑推理(第26~55小题,每小题2分,共60分。下列每题给出的A、
- B、C、D、E 五个选项中,只有一项符合试题要求)

26 某中学发现有学生课余用扑克玩带有赌博性质的游戏,因此规定学生不得带扑克进入学校,不过即使是硬币,也可以用作赌具,但禁止学生带硬币进入学校是不可思议的,因此,禁止学生带扑克进学校是荒谬的。

以下哪项如果为真,最能削弱上述论证? ()

- A. 禁止带扑克进学校不能阻止学生在校外赌博
- B. 硬币作为赌具远不如扑克方便
- C. 很难查明学生是否带扑克进学校
- D. 赌博不但败坏校风, 而且影响学生学习成绩

E. 有的学生玩扑克不涉及赌博

【答案】B查看答案

【解析】题干的论证方法是类比,类比要求对象的相关属性必须不存在实质性

的差异,否则类比的结论就不可靠。题干的论证过程是:硬币也可以用作赌

具,禁止学生带硬币进入学校是不可思议的,所以禁止学生带扑克进学校是荒

谬的。B 项 "硬币作为赌具远不如扑克方便" 表明把硬币同扑克作类比是不恰

当的, 削弱论证。ACDE 四项均不能削弱论证。

27 甲、乙、丙和丁进入某围棋邀请赛半决赛,最后要决出一名冠军。张、王和

李三人对结果作了如下预测:

张: 冠军不是丙。

王: 冠军是乙。

李: 冠军是甲。

已知张、王、李三人中恰有一人的预测正确,以下哪项为真? ()

A. 冠军是甲

B. 冠军是乙

C. 冠军是丙

D. 冠军是丁

E. 无法确定冠军是谁

【答案】D查看答案

【解析】假设题中给出三个预测为 P、Q、R,根据题意只有一项正确,若 Q或 R有一个是正确的,则 P一定也是正确的,这与题意相悖;若 P 正确,Q、R 错误,则冠军是丁,D 项为真。

28 除非年龄在 50 岁以下,并且能持续游泳三千米以上,否则不能参加下个月举行的花样横渡长江活动。同时,高血压和心脏病患者不能参加。老黄能持续游泳三千米以上,但没被批准参加这项活动。

以上断定能推出以下哪项结论? ()

- I. 老黄的年龄至少50岁。
- Ⅱ. 老黄患有高血压。
- Ⅲ. 老黄患有心脏病。
- A. 只有 I
- B. 只有Ⅱ
- C. 只有Ⅲ
- D. I、I和II至少一个
- E. I、Ⅱ和Ⅲ都不能从题干推出

【答案】E查看答案

【解析】用 p 表示 "老黄被批准参加这项活动", q 表示 "老黄年龄在 50 岁以下", r 表示 "老黄未患高血压", s 表示 "老黄未患心脏病"。根据题意, 如果 p, 则 q、r、s。这是一个充分条件假言命题,只要前件 p 成立,那么,

后件 q、r、s 一定成立; p 是 q、r、s 的充分而非必要条件, q、r、s 是 p 的必要条件。如果前件 p 不成立, 并不能说明后件 q、r、s 中至少有一个不成立 (并不排除其中的两个甚至三个条件都不成立), 还有其他原因可能导致不能参加活动。

29 一项对西部山区小塘村的调查发现,小塘村约五分之三的儿童入中学后出现中度以上的近视,而他们的父母及祖辈,没有机会到正规学校接受教育,很少出现近视。

以下哪项作为上述断定的结论最为恰当? ()

- A. 接受文化教育是造成近视的原因
- B. 只有在儿童期接受正式教育才易于成为近视
- C. 阅读和课堂作业带来的视觉压力必然造成儿童的近视
- D. 文化教育的发展和近视现象的出现有密切关系
- E. 小塘村约五分之二的儿童是文盲

【答案】D查看答案

【解析】题中"小塘村约五分之三的儿童入中学后出现中度以上的近视,而他们的父母及祖辈,没有机会到正规学校接受教育,很少出现近视",根据求异法的推理,比较的现象是"是否近视",差异因素是"是否接受学校教育",说明文化教育的发展和近视现象的出现有密切关系,所以 D 项最恰当。A 项,题干并不能断定"接受文化教育是造成近视的原因",并非所有儿童入中学后都出现中度以上的近视,而他们的父母及祖辈并非没有近视的,很少近视也并

非没有接受过文化教育。文化教育过程也不必然会造成近视; B 项, "只有在儿童期接受正式教育才易于成为近视",不能由题干得出; C 项, "必然"过于绝对,不能由题干得出; E 项缺乏充分论据,题中只能得出"小塘村约五分之二的儿童入中学后未出现中度以上的近视"。

30 小李考上了清华,或者小孙没考上北大。

增加以下哪项条件,能推出小李考上了清华? ()

- A. 小张和小孙至少有一人未考上北大
- B. 小张和小李至少有一人未考上清华
- C. 小张和小孙都考上了北大
- D. 小张和小李都未考上清华
- E. 小张和小孙都未考上北大

【答案】C查看答案

【解析】题干"小李考上了清华,或者小孙没考上北大"为相容选言命题,用 p表示"小李考上了清华",q表示"小孙没考上北大",该命题可表示为:p vq,若命题为真,则p或q至少有一个为真;若q为假,要命题为真,则p 必为真,即小孙考上北大,能推出小李考上清华。

31 大李和小王是某报新闻部的编辑,该报总编计划从新闻部抽调人员到经济部。总编决定:未经大李和小王本人同意,将不调动两人。大李告诉总编:

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问: https://d.book118.com/72807310600 1006023