2024-2025 学年四川省德阳市高三上学期一诊适应性考试数学 检测试券

检测试卷			
一、单选题			
1. 已知集合 $P = \{x\}$	$\left x^{2} \le 4\right\}, M = \left\{m\right\}, $	$P \mid M = M$, 则 m 的取值范	围是()
	B. [-2,2]		D.
$(-\infty, -2] \cup [2, +\infty)$			
2. 在复平面内,一个对应的复数为(应的复数分别是 1+2i,一2号	⊢i,0,则第4个顶点
A _. -1+2i	В. —1+3і	C. 3i	D. $-\frac{1}{2} + 3i$
3. 集合 $M = \{y y =$	$=2x, x>0\}, N=\{y \mid y\}$	$=\log_2 x$ },那么" $x \in M$ "是	! "x∈ N "的()
A. 充分而不必要条	件	B. 必要而不充分:	条件
C. 充要条件		D. 既不充分也不	必要条件
4. 己知 <i>m</i> , <i>n</i> 是两条	不同的直线, α , β 是两	个不同的平面,则下列命题	正确的是()
A. 若m//α,n//α	,则 <i>m// n</i>		
B. 若m // α,m // μ	eta ,则 $lpha/\!\!/eta$		
C. 若α ⊥ β,m ⊥ β	² ,m⊄α,则m//α		
D. 若 $\alpha \perp \beta$, $m \subset \alpha$	$lpha$,则 $m \perp eta$		
5. 已知圆 $O: x^2 + y$	$y^2=1$,过直线 $3x+4y-$	-10=0上的动点 P 作圆 O 的	的一条切线,切点为
A,则 $ PA $ 的最小的	直为 ()		
A. 1	B. $\sqrt{2}$	C. $\sqrt{3}$	D. 2
6. 已知圆台上、下户	底面的半径分别为3和5	5, 母线长为 4, <i>AB</i> 为上底	面圆的一条直径, C
是下底面圆周上的-	一个动点,则 V<i>ABC</i> 面和	识的最大值为 ()	

7. 设数列 $\{a_n\}$, $\{b_n\}$ 均为公比不等于 1 的等比数列,前 n 项和分别为 S_n, T_n ,若

A. $3\sqrt{37}$ B. $6\sqrt{3}$ C. $\sqrt{37}$ D. $3\sqrt{3}$

$$S_n = (2^n + 1)T_n$$
 , $\log \frac{a_4}{b_8} = ($

A. $\frac{1}{2}$

B. 1

C. $\frac{3}{2}$

D. 2

8. 已知函数 $f(x) = \sin x$, 若存在实数 x_1 , x_2 , ..., x_n , 满足 $0 \le x_1 < x_2 < \dots < x_n \le 4\pi$,

且 $|f(x_1)-f(x_2)|+|f(x_2)-f(x_3)|+\cdots+|f(x_{n-1})-f(x_n)|=8$,则正整数n的最小值为

A 3

B. 4

C. 5

D. 6

二、多选题

- 9. 某物理量的测量结果 X 服从正态分布 $N\left(100,\sigma^2\right)$,则()
- A. 该正态分布对应的正态密度曲线关于直线 x = 100 对称
- B. σ 越大,该正态分布对应的正态密度曲线越尖陡
- C. σ 越小,在一次测量中,X的取值落在(99,101)内的概率越大
- D. 在一次测量中, X 的取值落在(99,102) 与落在(101,104) 的概率相等
- 10. $a,b \in \mathbf{R}$,则下列命题中正确的是()

A. 若
$$\frac{1}{a} < \frac{1}{b}$$
,则 $a > b$

B. 若 $\ln a > \ln b$, 则 a > b

C. 若 $ac^2 > bc^2$,则 a > b

D. 若|a| > |b|, 则 $a^3 > b^3$

- 11. 在下列关于二项式的命题中,正确的是()
- A. 若二项式 $(a+b)^n$ 的展开式中,第3项的二项式系数最大,则n=5
- B. 若 $(1-2x)^8 = a_0 + a_1x + a_2x^2 + \dots + a_8x^8$,则 $a_1 + a_2 + a_3 + \dots + a_8 = 0$
- C. $\left(2x-\frac{1}{\sqrt{x}}\right)^6$ 的展开式中,常数项为 60
- D. $(1+x)(1-x)^5$ 的展开式中, x^2 的系数为 5

三、填空题

12. 已知向量 $_a$, $_b$ 的模分别为 2, 1, 且 $\begin{vmatrix} a & b \\ a - b \end{vmatrix} = \sqrt{3}$, 则 $\begin{vmatrix} a + b \\ a + b \end{vmatrix} = _____.$

13. 化简:
$$\left(\frac{\sqrt{3}}{\cos 10^{\circ}} - \frac{1}{\sin 10^{\circ}}\right) \cdot \left(\frac{\cos 15^{\circ} + \sin 15^{\circ}}{\cos 15^{\circ} - \sin 15^{\circ}}\right)$$
_____.

14. 过点P(0,2)作直线l交椭圆 $\frac{x^2}{2}+y^2=1$ 于A,B两点,其中A在线段BP上,则 $\frac{|AP|}{|BP|}$

四、解答题

- 15. 在VABC中,角A, B, C的对边分别为a, b, c,且 $\sqrt{3}a = 2b\sin A$.
- (1) 求角B的大小;

的取值范围为 .

- (2) 若VABC 不是钝角三角形,且 $b=\sqrt{3}$, a+c=3 , a>c , 求a , c 的值.
- 16. 某校开展定点投篮项目测试,规则如下: 共设定两个投篮点位,一个是三分线上的甲处,另一个是罚篮点位乙处,在甲处每投进一球得 3 分,在乙处每投进一球得 2 分. 如果前两次得分之和超过 3 分即停止投篮并且通过测试,否则将进行第三次投篮,每人最多投篮 3 次,如果最终得分超过 3 分则通过测试,否则不通过. 小明在甲处投篮命中率为 $\frac{1}{4}$,在乙处投篮命中率为 $\frac{4}{5}$,小明选择在甲处投一球,以后都在乙处投.
- (1) 求小明得3分的概率;
- (2) 试比较小明选择都在乙处投篮与选择上述方式投篮哪个通过率更大.
- 17. 已知函数 $f(x) = \ln x + \frac{a}{x}$.
- (1) 若曲线 y = f(x) 在点(1, f(1)) 处的切线为 x + y + b = 0, 求实数 b 的值;
- (2) 已知函数 $g(x) = f(x) + \frac{a^2}{x^2}$,且对于任意 $x \in (0, +\infty)$, g(x) > 0, 求实数 a 的取值范围.
- 18. 设等差数列 $\{a_n\}$ 的公差为d,且d>1. 令 $b_n=\frac{n^2+n}{a_n}$,记 S_n,T_n 分别为数列 $\{a_n\},\{b_n\}$ 的前n项和.
- (1) 若 $3a_2 = 3a_1 + a_3, S_3 + T_3 = 21$,
- (i) 求 $\{a_n\}$ 的通项公式;

- (ii) 若 $c_n = \begin{cases} a_n, n$ 为奇数 b_n, n 为偶数 数列 $\{c_n\}$ 的前n项和为 T_n ,求 T_{20} .
- (2) 若 $\left\{b_{\scriptscriptstyle n}\right\}$ 为等差数列,且 $S_{\scriptscriptstyle 19}-T_{\scriptscriptstyle 19}=19$,求d.
- 19. 已知函数 $f(x) = 2\sin^2\frac{\pi x}{2} + \sin\pi x 1$,将函数 f(x) 的所有正的零点从小到大排列组成数列 $\{a_n\}$.记[x]表示不超过x的最大整数,数列 $\{b_n\}$ 满足 $b_n = [a_n + 1]$.
- (1) 求数列 $\{b_n\}$ 的通项公式;
- (2)从数列 $\{b_n\}$ 的前n项中 $(n \ge 2)$,随机选出两个不同的项相乘,所得结果为偶数的概率为 P_n .是否存在一个正整数N,当 $n \ge N$ 时,恒有 $P_n < \frac{4}{5}$,若存在,求出N的最小值,若不存在,请说明理由.
- (3) 数列 $\{c_n\}$ 满足 $c_n = \frac{\left(-1\right)^{n+1}}{b_n}$,且数列 $\{c_n\}$ 的前n项和为 S_n ,求证. $S_{2n} < \ln 2$

2024-2025 学年四川省德阳市高三上学期一诊适应性考试数学 检测试卷

一、单选题

1. 已知集合 $P = \{x \mid x^2 \le 4\}$, $M = \{m\}$, 若 $P \mid M = M$, 则 m 的取值范围是()

A. $\left(-\infty, -2\right]$ B. $\left[-2, 2\right]$ C. $\left[2, +\infty\right)$

D.

 $(-\infty, -2] \cup [2, +\infty)$

【正确答案】B

【分析】根据集合的运算结果建立不等式求解.

【详解】由 $P \mid M = M$ 知, $m \in P$,

即 $m^2 \le 4$,解得 $-2 \le m \le 2$,

故选: B

2. 在复平面内,一个正方形的 3 个顶点对应的复数分别是 1+2i, -2+i, 0,则第 4 个顶点 对应的复数为()

A. -1+2i B. -1+3i

C. 3i

D. $-\frac{1}{2} + 3i$

【正确答案】B

【分析】由复数的几何意义及向量的坐标运算可求解.

【详解】复数 1+2i, -2+i, 0 所对应的点分别是 A(1, 2), B(-2, 1), O(0, 0), 由题意可知 $AB \perp OD$, 正方形以 OA,OB 为邻边, 设另一点为 D(x, v),

所以 AB = (-3,-1),OD = (x,y),OA = (1,2),BD = (x+2,y-1),

则
$$\begin{cases} AB \cdot OD = 0 \\ UN & UW \\ OA = \lambda BD \end{cases} \Rightarrow \begin{cases} -3x - y = 0 \\ 1 \times (y - 1) = 2 \times (x + 2) \end{cases}, \quad 解得 \begin{cases} x = -1 \\ y = 3 \end{cases},$$

 $\therefore z = -1 + 3i$.

故选: B.

3. 集合 $M = \{y | y = 2x, x > 0\}$, $N = \{y | y = \log_2 x\}$, 那么" $x \in M$ "是" $x \in \mathbb{N}$ "的 ()

A. 充分而不必要条件 B. 必要而不充分条件 C. 充要条件 D. 既不充分也不必要条件 【正确答案】A 【分析】将集合M,N化简,再由充分条件以及必要条件的定义即可得到结果. 【详解】因为 $M = \{y | y = 2x, x > 0\} = \{y | y > 0\}, N = \{y | y = \log_2 x\} = \mathbf{R}$, 所以集合M 是集合N 的真子集, 则" $x \in M$ "是" $x \in \mathbb{N}$ "的充分而不必要条件. 故选: A 4. 已知m,n是两条不同的直线, α,β 是两个不同的平面,则下列命题正确的是(A. 若 $m//\alpha$, $n//\alpha$,则m//nB. 若 $m // \alpha, m // \beta$,则 $\alpha // \beta$ C. 若 $\alpha \perp \beta$, $m \perp \beta$, $m \not\subset \alpha$, 则 $m // \alpha$ 【正确答案】C 【分析】根据线面位置关系,对每个选项进行逐一分析,即可判断和选择. 【详解】对 A: 若 $m//\alpha$, $n//\alpha$,则m,n的位置关系不确定,故 A 错误; 对 C: 若 $\alpha \perp \beta$, $m \perp \beta$, $m \not\subset \alpha$, 则 $m // \alpha$, 故 C 正确; 对 D: 若 $\alpha \perp \beta$, $m \subset \alpha$, 则 m, β 的位置关系不确定, 故 D 错误. 故选: C. 5. 已知圆 $O: x^2 + y^2 = 1$, 过直线3x + 4y - 10 = 0上的动点P作圆O的一条切线, 切点为 A ,则|PA|的最小值为()

B. $\sqrt{2}$

A. 1

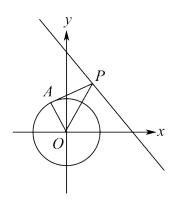
【正确答案】C

C. $\sqrt{3}$

D. 2

【分析】连接PO, $\left|PA\right|^2 = \left|PO\right|^2 - r^2$,当 $\left|PO\right|$ 最小时, $\left|PA\right|$ 最小,计算点到直线的距离得 到答案.

【详解】如图所示:连接PO,则 $\left|PA\right|^2 = \left|PO\right|^2 - r^2$,



当
$$|PO|$$
最小时, $|PA|$ 最小, $|PO|_{\min} = \frac{|-10|}{\sqrt{3^2 + 4^2}} = 2$,

故|PA|的最小值为 $\sqrt{2^2-1^2}=\sqrt{3}$.

故选: C.

6. 已知圆台上、下底面的半径分别为 3 和 5,母线长为 4, AB 为上底面圆的一条直径, C是下底面圆周上的一个动点,则VABC面积的最大值为()

A.
$$3\sqrt{37}$$

B.
$$6\sqrt{3}$$

B.
$$6\sqrt{3}$$
 C. $\sqrt{37}$

D.
$$3\sqrt{3}$$

【正确答案】A

【分析】结合题目所给条件,计算出圆台的高后,可得VABC的中线CM为定值,则当 *OM* ⊥ *AB*时, V*ABC* 面积有最大值.

【详解】取上下底面圆心M、N, 连接MN、MC、NC,

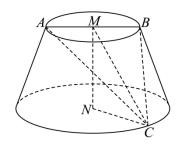
由圆台性质可知 $MN \perp NC$, 且 $MN = \sqrt{4^2 - (5-3)^2} = 2\sqrt{3}$,

又
$$NC = 5$$
,故 $MC = \sqrt{(2\sqrt{3})^2 + 5^2} = \sqrt{37}$,

则当MC为VABC以AB为底的高时,VABC面积最大,

且其最大值为
$$\frac{1}{2}$$
×6× $\sqrt{37}$ = $3\sqrt{37}$.

故选: A.



7. 设数列 $\left\{a_{n}\right\}$, $\left\{b_{n}\right\}$ 均为公比不等于 1 的等比数列,前 n 项和分别为 S_{n} , T_{n} , 若

$$S_n = (2^n + 1)T_n$$
, $\mathbb{N} \frac{a_4}{b_8} = ($

A. $\frac{1}{2}$

B. 1

C. $\frac{3}{2}$

D. 2

【正确答案】C

【分析】根据给定等式,可得 $a_1 = 3b_1$,再求出数列 $\{a_n\}$, $\{b_n\}$ 的公比即可计算作答.

【详解】由 $S_n=(2^n+1)T_n$ 得, $a_1=3b_1$,设 $\{a_n\}$ 的公比为 q_1 , $\{b_n\}$ 的公比为 q_2 ,

当 n = 2 时, $3(1+q_1) = 5(1+q_2)$, 即 $3q_1 = 2+5q_2$,

当 n = 3 时, $3(1+q_1+q_1^2) = 9(1+q_2+q_2^2)$, 即 $q_1+q_1^2 = 2+3q_2+3q_2^2$,

联立两式解得 $q_1 = 4$, $q_2 = 2$, 此时, $S_n = \frac{a_1(4^n - 1)}{3} = (2^n + 1)b_1(2^n - 1) = (2^n + 1)T_n$,

$$\text{for } a_1=3b_1 \text{ , } \quad q_1=4, q_2=2 \text{ , } \text{ for } \text{ in } \frac{a_4}{b_8}=\frac{a_1q_1^3}{b_1q_2^7}=\frac{3b_1\cdot 4^3}{b_1\cdot 2^7}=\frac{3\times 2^6}{2^7}=\frac{3}{2}.$$

故选: C

8. 已知函数 $f(x) = \sin x$,若存在实数 x_1 , x_2 , ..., x_n ,满足 $0 \le x_1 < x_2 < \cdots < x_n \le 4\pi$,

且 $|f(x_1)-f(x_2)|+|f(x_2)-f(x_3)|+\cdots+|f(x_{n-1})-f(x_n)|=8$,则正整数n的最小值为

A. 3

B. 4

C. 5

D. 6

【正确答案】D

【 分 析 】 由 $f(x) = \sin x$ 的 性 质 , 根 据

 $|f(x_1)-f(x_2)|+|f(x_2)-f(x_3)|+\cdots+|f(x_{n-1})-f(x_n)|=8$ 的特点以及题意求解.

【详解】由题意, n 要尽可能地小,

则等式 $|f(x_1)-f(x_2)|+|f(x_2)-f(x_3)|+\cdots+|f(x_{n-1})-f(x_n)|=8$ 中,每一项要尽可能地大,

因为 $|f(x_{n-1})-f(x_n)| \le 2$,显然尽可能有更多组使 $|f(x_{n-1})-f(x_n)| = 2$ 时,n 最小,

结合 $f(x) = \sin x$ 最多三组 $|f(x_{n-1}) - f(x_n)| = 2$, 故另外两组的和为 2 时, n 最小,

此时不妨取可取
$$x_1 = 0, x_2 = \frac{\pi}{2}, x_3 = \frac{3\pi}{2}, x_4 = \frac{5\pi}{2}, x_5 = \frac{7\pi}{2}, x_6 = 4\pi$$
 满足题意.

故选: D..

关键点点睛: 关键是熟悉正弦函数的图象的性质, 理解所给式子的意义.

二、多选题

- 9. 某物理量的测量结果 X 服从正态分布 $N(100,\sigma^2)$,则()
- A. 该正态分布对应的正态密度曲线关于直线 x = 100 对称
- B. σ 越大,该正态分布对应的正态密度曲线越尖陡
- C. σ 越小,在一次测量中,X的取值落在(99,101)内的概率越大
- D. 在一次测量中, X 的取值落在(99,102) 与落在(101,104) 的概率相等

【正确答案】AC

【分析】利用正态密度曲线的对称性可判断 AD 选项的正误;利用 σ 的大小对正态密度曲线的影响可判断 BC 选项的正误.

【详解】对于 A 选项,该正态分布对应的正态密度曲线关于直线 x = 100 对称, A 对;

对于 B 选项, σ 越大, 曲线越平, B 错;

对于 C 选项, σ 越小, 曲线越陡,

所以, σ 越小, 在一次测量中, X的取值落在(99,101)内的概率越大, C 对;

对于 D 选项, 因为 $X \sim N(100, \sigma^2)$,

由正态密度曲线的对称性可得P(99 < X < 102) - P(101 < X < 104)

= P(99 < X < 101) - P(102 < X < 104) > 0, D \(\frac{\text{th}}{\text{.}}\)

故选: AC.

10. $a,b \in \mathbf{R}$,则下列命题中正确的是()

A. 若
$$\frac{1}{a} < \frac{1}{b}$$
,则 $a > b$

B. 若 $\ln a > \ln b$, 则 a > b

C. 若 $ac^2 > bc^2$,则a > b

D. 若|a| > |b|, 则 $a^3 > b^3$

【正确答案】BC

【分析】赋值法可判断 AD; 利用 $y = \ln x$ 在 $(0, +\infty)$ 上为增函数可判断 B; 由不等式性质可判断 C.

【详解】对于 A, 取 b = 2, a = -1, 有 $\frac{1}{a} < \frac{1}{b}$, 但显然 a < b, 故 A 错误;

对于 B, $y = \ln x$ 在 $(0, +\infty)$ 上为增函数,又因为 $\ln a > \ln b$,所以 a > b ,故 B 正确;

对于 C, 由 $ac^2 > bc^2$, 可得 $c \neq 0$, 故 $c^2 > 0$, 所以 a > b, 故 C 正确;

对于 D, 当 a = -2, b = 1, 有 |a| > |b|, 但 $a^3 < b^3$, 故 D 错误.

故选: BC.

11. 在下列关于二项式的命题中,正确的是()

A. 若二项式 $(a+b)^n$ 的展开式中,第3项的二项式系数最大,则n=5

B. 若
$$(1-2x)^8 = a_0 + a_1x + a_2x^2 + \dots + a_8x^8$$
, 则 $a_1 + a_2 + a_3 + \dots + a_8 = 0$

C.
$$tag(2x-\frac{1}{\sqrt{x}})^6$$
的展开式中,常数项为 60

D. $(1+x)(1-x)^5$ 的展开式中, x^2 的系数为 5

【正确答案】BCD

【分析】对n 分奇偶讨论可求得n 判断 A; 令x=1 与x=0,可求得 $a_1+a_2+a_3+\cdots+a_8$ 的值判断 B; 利用展开式的通项公式求解判断 C; 求得 $\left(1-x\right)^5$ 中的x 与 x^2 的系数即可判断 D.

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问:

https://d.book118.com/736052151052011005