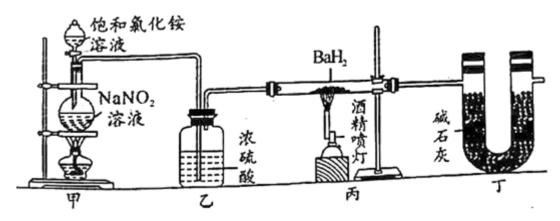

吉林省白城市第一中学 2024 年高三下学期第五次调研考试化学试题

注意事项:

- 1. 答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
- 2. 回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
- 3. 考试结束后,将本试卷和答题卡一并交回。
- 一、选择题(每题只有一个选项符合题意)

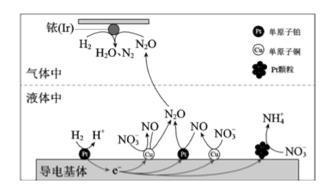


下列说法不正确的是()

- A. 萘与 H₂完全加成后,产物的分子式为 C₁₀H₁₈
- B. 蒽、菲、芘的一氯代物分别有3种、5种、5种
- C. 上述四种物质的分子中,所有碳原子均共平面
- D. 上述四种物质均能发生加成反应、取代反应
- 2、某温度下, 0.200 mol·L-1 的 HA 溶液与 0.200 mol·L-1 的 NaOH 溶液等体积混合后, 所得溶液中部分微粒组分及浓度如下表, 下列说法正确的是

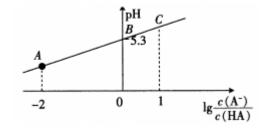
微粒	X	Y	Na ⁺	A-
浓度/ (mol•L-1)	8.00×10 ⁻⁴	2.50×10 ⁻¹⁰	0.100	9.92×10 ⁻²

- A. 0.1 mol·L-1HA 溶液的 pH=1
- B. 该温度下 K_w=1.0×10⁻¹⁴
- C. 微粒 X 表示 OH⁻, Y 表示 H+
- D. 混合溶液中: $n(A^{-}) + n(X) = n(Na^{+})$
- 3、氮化钡(Ba_3N_2)是一种重要的化学试剂。高温下,向氢化钡(BaH_2)中通入氮气可反应制得氮化钡。已知: Ba_3N_2 遇水反应; BaH_2 在潮湿空气中能自燃,遇水反应。用图示装置制备氮化钡时,下列说法不正确的是()

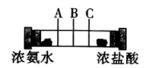

- A. 装置甲中反应的化学方程式为 NaNO₂+NH₄Cl₂ N₂↑+NaCl+2H₂O
- B. BaH₂ 遇水反应, H₂O 作还原剂
- C. 实验时, 先点燃装置甲中的酒精灯, 反应一段时间后, 再点燃装置丙中的酒精喷灯进行反应
- D. 装置乙中的浓硫酸和装置丁中的碱石灰均是用于吸收水蒸气, 防止水蒸气进入装置丙中
- 4、下列实验操作对应的现象和结论均正确的是()

选项	 操作 	现象	结论			
A	相同温度下,测定等浓度的 NaHCO3和 NaHSO4溶液的 pH	前者 pH 比后者大	非金属性: S>C			
В	将相同体积、相同 pH 的盐酸和 醋酸溶液分别稀释 a、b 倍	稀释后溶液 pH 相	a>b			
С	向 25mL 沸水中滴加 5~6 滴 FeCl ₃ 饱和溶液,继续煮沸	生成红褐色沉淀	制得 Fe(OH)3 胶 体			
D	向 H ₂ O ₂ 溶液中滴加少量硫酸酸 化的 FeSO ₄ 溶液	溶液变为棕黄色后迅速出现大量气泡	Fe ²⁺ 催化 H ₂ O ₂ 发 生分解反应生成 O ₂			

- A. A
- B. B
- C. C
- D. D


- 5、与氢硫酸混合后无明显现象的是
- A. NaOH 溶液 B. 亚硫酸
- C. FeCl₃溶液 D. 氯水
- 6、在2019年9月25日,北京大兴国际机场正式投运。下列说法不正确的是
- A. 机场航站楼使用的玻璃为无机非金属材料
- B. 机场航站楼使用的隔震支座由橡胶和钢板相互粘结而成,属于新型无机材料
- C. 机场航站楼采用的钢铁属于合金材料

- D. 机场高速采用了新型自融冰雪路面技术,减少了常规融雪剂使用对环境和桥梁结构所造成的破坏
- 7、在金属 Pt、Cu 和铱(Ir)的催化作用下,密闭容器中的 H₂ 可高效转化酸性溶液中的硝态氮(NO₃⁻)以达到消除污染的目的。其工作原理的示意图如下:



下列说法不正确的是

- A. Ir 的表面发生反应: H₂ + N₂0=N₂ + H₂0
- B. 导电基体上的负极反应: $H_2-2e^-=2H^+$
- C. 若导电基体上只有单原子铜,也能消除含氮污染物
- D. 若导电基体上的 Pt 颗粒增多,不利于降低溶液中的含氮量
- 8、设 N_A 为阿伏伽德罗常数的值,下列说法正确的是()
- A. 18gT₂O 和 18gH₂O 中含有的质子数均为 10N_A
- B. 1L1mol/L 的 Na₂CO₃溶液中 CO₃²-和 HCO₃-离子数之和为 N_A
- C. 78gNa₂O₂ 与足量 CO_2 充分反应转移的电子数目为 $2N_A$
- D. 加热条件下,含 $0.2 \text{molH}_2 \text{SO}_4$ 的浓硫酸与足量铜反应,生成 SO_2 的分子数小于 0.1N_A
- 9、25℃时,在 20 mL 0.1 mol·L⁻¹ 一元弱酸 HA 溶液中滴加 0.1 mol·L⁻¹ NaOH 溶液,溶液中 1g[c(A⁻)/c(HA)]与 pH 关系如图所示。下列说法正确的是

- A. A 点对应溶液中: c(Na+)>c(A-)>c(H+)>c(OH-)
- B. 25℃时, HA 酸的电离常数为 1.0×10-5.3
- C. B 点对应的 NaOH 溶液体积为 10 mL
- D. 对 C 点溶液加热(不考虑挥发),则 c(A-)/[c(HA)c(OH-)]一定增大
- 10、如图所示,在一个密闭的玻璃管两端各放一团棉花,再用注射器同时在两端注入适量的浓氨水和浓盐酸,下列说 法不正确的是

- A. 玻璃管中发生的反应可表示为: NH3+HCI=NH4CI
- B. 实验时会在玻璃管的 A 处附近看到白雾
- C. 用手触摸玻璃管外壁, 会感觉到有热量放出
- D. 将浓盐酸换成浓硝酸也会有相似现象
- 11、在下列自然资源的开发利用中,不涉及化学变化的是
- A. 用蒸馏法淡化海水

B. 用铁矿石冶炼铁

C. 用石油裂解生产乙烯

- D. 用煤生产水煤气
- 12、总书记在上海考察时指出,垃圾分类工作就是新时尚。下列垃圾分类错误的是

- 13、根据元素在周期表中的位置可以预测
- A. 分解温度: CH₄>H₂S

- B. 氧化性: NaClO>Na₂SO₃
- C. 同浓度溶液 pH: Na₂SiO₃> Na₂CO₃
- D. 金属性: Ca > Na
- 14、下列有关有机化合物的说法中,正确的是
- A. 淀粉、蛋白质和油脂都属于有机高分子化合物
- B. 乙烯、苯和乙醇均能被酸性高锰酸钾溶液氧化
- C. 绝大多数的酶属于具有高选择催化性能的蛋白质
- D. 在 FeBr, 的催化作用下, 苯可与溴水发生取代反应
- 15、下列食品添加剂中,其使用目的与反应速率有关的是()

A. 抗氧化剂

B. 调味剂

C. 着色剂

D. 增稠剂

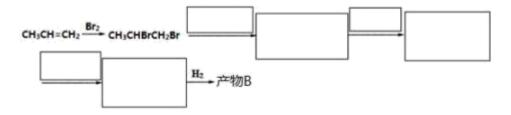
16、对下列实验现象或操作解释错误的是()

	现象或操作	解释
A	KI 淀粉溶液中滴入氯水变蓝,再通入 SO ₂ ,蓝色褪去	SO ₂ 具有还原性
В	配制 SnCl ₂ 溶液时,先将 SnCl ₂ 溶于适量稀盐酸,再用蒸馏水稀释,最后在试剂瓶中加入少量的锡粒	抑制 Sn ²⁺ 水解, 并防止 Sn ²⁺ 被氧化为 Sn ⁴⁺
C	某溶液中加入硝酸酸化的氯化钡溶液,有白色沉淀生成	不能说明该溶液中一定 含有 SO ₄ ²⁻
D	向含有 ZnS 和 Na ₂ S 的悬浊液中滴加 CuSO ₄ 溶液,生成黑色沉淀	$K_{sp}(CuS) < K_{sp}(ZnS)$

A. A

B. B

C. C

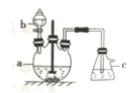

D. D

- 二、非选择题(本题包括5小题)
- 17、治疗帕金森病的新药沙芬酰胺的合成方法如下:

已知:

- ①CH₃CN 在酸性条件下可水解生成 CH₃COOH。
- ②CH₂=CH-OH 和 CH₃OOH 均不稳定。
- (1)C 生成 D 的反应类型为____。G 中含氧官能团的名称为___。B 的名称为___。
- (2)沙芬酰胺的结构简式为。
- (3)写出反应(1)的方程式____。分析反应(2)的特点,写出用福尔马林浸制生物标本的反应原理的方程式____(蛋白质的结构用 表示)。
- (4)H 是 F 相邻的同系物,H 的苯环上有两个处于对位的取代基,符合下列条件的 H 的稳定的同分异构体共有_____ 种。

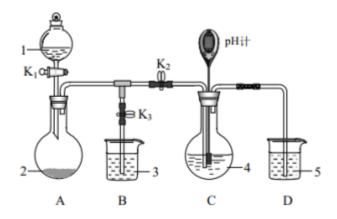
- ①苯环上仍然有两个处于对位的取代基;
- ②能与 NaOH 溶液反应;
- (5)下图是根据题中信息设计的由丙烯为起始原料制备 B 的合成路线,在方框中补全必要的试剂和中间产物的结构简式 (无机试剂任选,氧化剂用[O]表示,还原剂用[H]表示,连 续氧化或连续还原的只写一步)。



18、下图是一种天然药物桥环分子合成的部分路线图(反应条件已经略去):

已知: ①LiBH4可将醛、酮、酯类还原成醇,但不能还原羧酸、羧酸盐、碳碳双键; LiBH4 遇酸易分解。

②RCH₂COOR' CH₃I RCH(CH₃)COOR', RCOR' LiBH₄ RCH(OH)R', RCOOR' LiBH₄ RCH₂OH+R'OH.


- (1) 反应 $A \rightarrow B$ 中需要加入试剂 X,其分子式为 $C_4H_8O_2$,X 的结构简式为_____。
- (2) C 用 $LiBH_4$ 还原得到 D,C→D 不直接用镍作催化剂 H_2 还原的原因是
- (3) 写出一种满足下列条件的 A 的同分异构体的结构简式为_____。①属于芳香族化合物;②能使 FeCl₃ 溶液显色;③分子中有 4 种不同化学环境的氢。
- (4) 写出 E 和银氨溶液反应的化学方程式。
- (5)根据已有知识并结合相关信息,设计 $B \rightarrow C$ 的合成路线图(CH_3I 和无机试剂任选),合成路线常用的表示方式为 $H_2C = CH_2 \xrightarrow{HBr} CH_3CH_2Br \xrightarrow{NaOH ** \%} CH_3CH_2OH$ 。______
- 19、硫酸铜是一种常见的化工产品,它在纺织、印染、医药、化工、电镀以及木材和纸张的防腐等方面有极其广泛的用途。实验室制备硫酸铜的步骤如下:

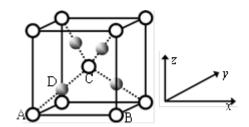
①在仪器 a 中先加入 20g 铜片、60 mL 水, 再缓缓加入 17 mL 浓硫酸:在仪器 b 中加入 39 mL 浓硝酸;在仪器 c 中加入

20%的石灰乳 150 mL。

- ②从仪器 b 中放出约 5mL 浓硝酸,开动搅拌器然后采用滴加的方式逐渐将浓硝酸加到仪器 a 中,搅拌器间歇开动。当最后滴浓硝酸加完以后,完全开动搅拌器,等反应基本停止下来时,开始用电炉加热直至仪器 a 中的红棕色气体完全消失,立即将导气管从仪器 c 中取出,再停止加热。
- ③将仪器 a 中的液体倒出,取出未反应完的铜片溶液冷却至室温.析出蓝色晶体.回答下列问题:
- (1) 将仪器 b 中液体滴入仪器 a 中的具体操作是。
- (2) 写出装置 a 中生成 CuSO₄ 的化学方程式: 。
- (3)步骤②电炉加热直至仪器 a 中的红棕色气体完全消失,此时会产生的气体是_____,该气体无法直接被石灰乳吸收,为防止空气污染,请画出该气体的吸收装置(标明所用试剂及气流方向) 。
- (4) 通过本实验制取的硫酸铜晶体中常含有少量 $Cu(NO_3)_2$,可来用重结晶法进行提纯,检验 $Cu(NO_3)_2$ 是否被除净的方法是。
- (5) 工业上也常采用将铜在 450 °C 左右焙烧,再与一定浓度的硫酸反应制取硫酸铜的方法,对比分析本实验采用的硝酸氧化法制取 CuSO₄的优点是。
- (6)用滴定法测定蓝色晶体中 Cu^2 +的含量。取 a g 试样配成 100 mL 溶液,每次取 20.00 mL 用 c $mol \cdot L^{-1}EDTA$ (H_2Y)标准溶液滴定至终点,平行滴定 3 次,平均消耗 EDTA 溶液 b mL,滴定反应为 $Cu^2+H_2Y=CuY+2H^+$,蓝色晶体中 Cu^2+ 质量分数 0= %.
- 20、 $Na_2S_2O_3$ 是重要的化工原料,易溶于水,在中性或碱性环境中稳定,在酸性环境下易分解生成 S 和 SO_2 。某小组设计了如下实验装置制备 $Na_2S_2O_3$ (夹持及加热仪器略),总反应为 $2Na_2S+Na_2CO_3+4SO_2$ == $3Na_2S_2O_3+CO_2$ 。回答下列问题:
- a.70%H₂SO₄ b. Na₂SO₃粉末 c. NaOH 溶液 d. Na₂S 、Na₂CO₃溶液 e. NaOH 溶液

- (1) 装置 A 的作用是制备 ,反应的化学方程式为 。
- (2) 完成下表实验过程:

操作步骤	│ │ 装置 C 的实验现象	解释原因	
检查装置气密性后,添加药 品	pH 计读数约为 13	用离子方程式表示(以S ²⁻ 为例): ①	
打开 K_2 ,关闭 K_3 ,调节 K_1 ;使硫酸缓慢匀速滴下	i.导管口有气泡冒出,② —— ii.pH 计读数逐渐 ③	反应分步进行: $Na_2CO_3 + SO_2 = Na_2SO_3 + CO_3$ $+ SO_2 = Na_2SO_3 + CO_3$ $+ SO_2 = 2Na_2SO_3 + 3S_2$ \downarrow $Na_2SO_3 + S = Na_2S_2O_3$ (较慢)	
当 pH 计读数接近 7 时,立即停止通 SO_2 ,操作是 \bigoplus		必须立即停止通 SO_2 的原因是: $\boxed{5}$	
(3) Na ₂ S ₂ O ₃ 有还原性,可 验证该预测: 取少量反应后的		溶液中通入少量 Cl_2 ,某同学预测 Cl_2 。	S ₂ O ₃ ²⁻ 转变为SO ₄ ²⁻ ,


(3) $Na_2S_2O_3$ 有还原性,可作脱氯剂。向 $Na_2S_2O_3$ 溶液中通入少量 Cl_2 ,某同学预测 $S_2O_3^{2^-}$ 转变为 $SO_4^{2^-}$,设计	实验
脸证该预测 : 取少量反应后的溶液于试管中,。	
21 CuSO.和 Cu(NO.)。县自然界中重要的铜卦 同签下列问题。	

(1) CuSO₄和 Cu(NO₃)₂中阳离子基态核外电子排布式为______,S、O、N 三种元素的第一电离能由大到小为

(2) SO_4^{2-} 的立体构型是_____,与 SO_4^{2-} 互为等电子体的一种分子为_____(填化学式)。

(4) CuSO₄ 的熔点为 560°C, Cu(NO₃)₂ 的熔点为 115°C, CuSO₄熔点更高的原因是_____。

(5) 利用 CuSO₄和 NaOH 制备的 Cu(OH)₂ 检验醛基时,生成红色的 Cu₂O,其晶胞结构如图所示。

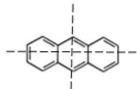
①该晶胞原子坐标参数 A 为 (0, 0, 0); B 为 (1, 0, 0); C 为 $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$ 。则 D 原子的坐标参数为______,它代表 原子。

②若 Cu_2O 晶体密度为 d $g\cdot cm^{-3}$,晶胞参数为 a pm,则阿伏加德罗常数值 $N_A=$ _____。

参考答案

一、选择题(每题只有一个选项符合题意)

1, B


【解析】

A、萘与氢气完全加成后产物是

,其分子式为 C₁₀H₁₈, 正确;

D 苗

. 有3种不同的氢原子, 一氢代物有3种, 菲

, 有5种不同的氢

盾子 一氢代物右5种 芯

,有3种不同的氢原子,一氯代物有3种,错误;

- C、四种有机物都含有苯环,苯环的空间构型为平面正六边形,因此该四种有机物所有碳原子都共面,正确;
- D、四种有机物都能发生加成反应和取代反应,正确。

答案选 B。

2, D

【解析】

以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问: https://d.book118.com/738117011107006076