
1

A Survey of Geometric Graph Neural Networks:
Data Structures, Models and Applications

Jiaqi Han*4 , Jiacheng Cen*1 , Liming Wu*1 , Zongzhao Li1 , Xiangzhe Kong2 , Rui Jiao2 , Ziyang Yu2 , Tingyang
Xu3, Fandi Wu3 , Zihe Wang1 , Hongteng Xu1 , Zhewei Wei1 , Yang Liu。2 , Yu Rong。3 , Wenbing Huang。1

Abstract—Geometric graph is a special kind of graph with geometric features, which is vital to model many scientific problems. Unlike

generic graphs, geometric graphs often exhibit physical symmetries of translations, rotations, and reflections, making them ineffectively

processed by current Graph Neural Networks (GNNs). To tackle this issue, researchers proposed a variety of Geometric Graph Neural

Networks equipped with invariant/equivariant properties to better characterize the geometry and topology of geometric graphs. Given the
current progress in this field, it is imperative to conduct a comprehensive survey of data structures, models, and applications related to

geometric GNNs. In this paper, based on the necessary but concise mathematical preliminaries, we provide a unified view of existing models
from the geometric message passing perspective. Additionally, we summarize the applications as well as the related datasets to facilitate
later research for methodology development and experimental evaluation. We also discuss the challenges and future potential directions of
Geometric GNNs at the end of this survey.

Index Terms—Scientific Systems, Geometric Graphs, Graph Neural Networks, Equivariance, Invariance

 ◆

1 INTRODUCTION

biochemistry require to process data in the form of
geometric graphs [24]. Distinct from typical graph data, geo-
metric graphs additionally assign each node a special type of
node feature in the form of geometric vectors. For example,
a molecule/protein can be regarded as a geometric graph,
where the 3D position coordinates of atoms are the geometric
vectors; in a general multi-body physical system, the 3D states
(positions, velocities or spins) are the geometric vectors of
the particles. Notably, geometric graphs exhibit symmetries
of translations, rotations and/or reflections. This is because
the physical law controlling the dynamics of the atoms (or
particles) is the same no matter how we translate or rotate the
physical system from one place to another. When tackling this
type of data,it is essential to incorporate the inductive bias of
symmetry into the design of the model, which motivates the
study of geometric Graph Neural Networks (GNNs).

Constructing GNNs that permit such symmetry constraints
has long been challenging to methodological design. Pio-
neer approaches such as DTNN [222], DimeNet [135] and
GemNet [136], transform the input geometric graph into
distance/angle/dihedral-based scalars that are invariant to
rotations or translations, constituting the family of invariant
GNNs. Noticing the limit on the expressivity of invariant

• * denotes equal contributions; 。 denotes corresponding authors.

• 1 Gaoling School of Artificial Intelligence, Renmin University of China.

• 2 Dept. of Comp. Sci. & Tech., Institute for AI, BNRist Center,
Tsinghua University.

• 3 Tencent AI Lab.

• 4 Department of Computer Science, Stanford University.

ar
X

iv
:2

40
3.

00
48

5v
 1

 [c
s.L

G
]

1
M

ar
 2

02
4

Any scientific problems particularly in physics andM

1

1

50% 40% 30%

20% 10%

0%
dyMEAN RosettaAb

(c) Antibody Design

Fig. 1. Performance comparisons between geometric GNNs and traditional
methods on molecular property prediction, protein-ligand docking, and an- tibody
design. Notably, the methods based on geometric GNNs, including EGNN [216],
DiffDock [41], and dyMEAN [142], remarkably outperform traditional MPNN
[80], Gnina [179], and RossetaAb [1], on the datasets of QM9 [203], PDBBind
[168], and SAbDab [50], respectively, verifying the effectiveness and efficiency
of geometric GNNs over various tasks.

GNNs, EGNN [216] and PaiNN [219] additionally involve
geometric vectors in message passing and node update to
preserve the directional information in each layer, leading to
equivariant GNNs. With group representation theory as a
helpful tool, TFN [242], SE(3)-Transformer [67] and SEGNN
[23] generalizes invariant scalars and equivariant vectors by
viewing them as steerable vectors parameterized by high-order
spherical tensors, giving rise to high-degree steerable GNNs.
Built upon these fundamental approaches, geometric GNNs have
made remarkable success in various applications of diverse
systems, including physical dynamics simulation [67,216],
molecular property prediction [15,152], protein structure prediction
[9], protein generation [267,110], and RNA structure ranking
[245] . Figure 1 illustrates the superior performance of geometric
GNNs against traditional methods on the representative tasks.

To facilitate the research of geometric GNNs, this work
presents a systematic survey focusing both on the methods and

ε HOMO ↓

εLOMO ↓

 RMSD ↓
 Time (s) ↓

(a) Property Prediction (b) Ligand Docking

150

100

50

0

0.5

0.4

0.3

0.2

0.1

0

 AAR ↑
DockQ ↑50

40

30

20

10

0

50

40

30

20

10

0

10

8

6

4

2

0

DiffDock GninaEGNN MPNN

2

Models

Geometric

Massage Passing
→′
x i h′i

Fig. 2. Illustration of the complete input-output pipeline from data structures, models to applications. Note that most figures here for illustrating different
applications are edited based on previous papers [91, 214, 133, 103, 86, 41, 125, 155, 141, 223, 30, 246, 144]. The term “instance” indicates a
self-interacted system composed of multiple particles/atoms, such as a molecule or a protein. Pocket-Based Molecule Sampling, Ligand-Binding Affinity
Prediction, and Protein-Ligand Docking are denoted with yellow shading to imply that all these tasks take as the multi-instance format “Molecule+Protein”.

applications1, which is structured as the following sections:
In §2, we introduce necessary preliminaries on group theory
and the formal definition of equivariance/invariance; In §3,
we propose geometric graph as a universal data structure
that will be leveraged throughout the entire survey as a
bridge between real-world data and the models,i.e., geometric
GNNs; In §4, we summarize existing models into invariant
GNNs (§4.2) and equivariant GNNs (§4.3), while the latter is
further categorized into scalarization-based models (§ 4.3.1)
and high-degree steerable models (§4.3.2); Besides, we also
introduce geometric graph transformers in § 4.4; In § 5, we
provide a comprehensive collection of the applications that
have witnessed the success of geometric GNNs on particle-

1. This work is an extended survey of our previous short version [93].

Y

Data Structures
Geometric Graph

N-body

h i ∈ RCh

→
x

i ∈ R3

CrystalMolecule

Protein

Applications

Si
ng

le
 In

st
an

ce

 M
ul

ti
In

st
an

ce

▲

Pocket-Based Mol Sampling

Protein-Protein
Docking

C-RMSD
I-RMSD
Fnat

DockQ

…

Protein

Co-Design

HOMO
LOMO

ZPVE

…

…

G~PP(L, ⃞, H)

Molecular
Pretraining

RMSD
Ranking

Small Molecule

Protein Others

Protein

Pretraining

Particle

RNA Structure
Prediction

Particle Trajectory
Prediction ~po(

Protein FoldingMolecular Dynamics
Simulation

Perplexity
Recovery

Crystal
Generation

Molecular
Generation

Physical Dynamics
Simulation

Linker Design

Binding Site
Prediction

Molecular Property
Prediction

Protein-Ligand
Docking

Chemical
Reaction

Relaxed Energy
Prediction

Ligand Binding
Affinity

Rigid Body
Interaction

Peptide DesignAntibody Design

→
x i h i

j

based physical systems, molecules, proteins, complexes, and
other domains like crystals and RNAs.

The goal of this survey is to provide a general overview
throughout data structure, model design, and applications,
which constitutes an entire input-output pipeline that is
instructive for machine learning practitioners to employ
geometric GNNs on various scientific tasks. Recently, sev-
eral related surveys have been proposed, which place main
focus on methodology of geometric GNNs [52], pretrained
GNNs for chemical data [276], representation learning for
molecules [89, 7], and general application of artificial in-
telligence in diverse types of scientific systems [299]. In
contrast to all of them, this survey places an emphasis on
geometric graph neural networks, not only encapsulating

3

theoretical foundations of geometric GNNs but also delivering
an exhaustive summary of the related applications in domains
across physics, biochemistry, and material science. Meanwhile,
we discuss future prospects and interesting research directions
in §6. We also release the Github repository that collects the
reference, datasets, codes, benchmarks, and other resources
related to geometric GNNs.

2 THE BASIC NOTION OF SYMMETRY

In this section, we will compactly introduce the basic notions
related to symmetry. Readers can skip this section and get
straight to the methodology part in § 3 if they are familiar
with the theoretical background.

2.1 Transformation and Group

By defining symmetry, we indicate that an object of interest
keeps invariant under a set of transformations. For instance,
the distance between any two points in space remains constant,
regardless of how we simultaneously rotate or translate these
two points. Mathematically, a set of transformations forms a
group (more details are referred to [58]).

Definition 1 (Group). A group G is a set of transformations
with a binary operation “·” satisfying these properties: (i) it is
closed, namely, ∀a,b ∈ G,a · b ∈ G; (ii) it is associative, namely,

∀a,b,c ∈ G,(a · b) · c = a · (b · c); (iii) there exists an identity
element e ∈ Gsuch that ∀a ∈ G,a · e = e · a = a; (iv) each element

must have an inverse, namely, ∀a ∈ G, ∃b ∈ G,a · b = b · a = e,
where the inverse b is denoted as a −1 .

We below provide some examples commonly used in the
applications of this paper:

• E(d) is an Euclidean group consisting of rotations, reflec-
tions and translations, acting on d-dimension vectors.

• T(d) is a subgroup of Euclidean group that consists of
translations.

• O(d) is an orthogonal group that consists of rotations and
reflections, acting on d-dimension vectors.

• SO(d) is a special orthogonal group that only consists of
rotations.

• SE(d) is a special Euclidean group that consists of only
rotations and translations.

• Lie Group is a group whose elements form a differentiable
manifold. Actually, all the groups above are specific exam-
ples of Lie Group.

• SN is a permutation group whose elements are permutations
of a given set consisting of N elements.

2.2 Group Representation

While the group operation “·” is defined abstractly above,
it can be realized as matrix multiplication, with the help
of group representation. A representation of G is a group

homomorphism ρ(g) : G }→ GL(V) that takes as input
the group element g ∈ G and acts on the general linear
group of some vector space V, satisfying ρ(g)ρ(h) = ρ(g ·h),
∀g, h ∈ G. When V = Rd, then GL(V) contains all
invertible d × d matrices and ρ(g) assigns a matrix to the
element g.

For the orthogonal group O(d), one of its common
group representations is defined by orthogonal matrices O
∈ Rd×d subject to O ⊤ O = I ; for SO(d), the group
representation is

restricted to orthogonal matrices of determinant 1, denoted
as R. The case of translation group T(d) is a bit tedious and
can be derived in the projective space using homogeneous
coordinates; here, for simplicity, we directly define translation
as vector addition other than matrix multiplication. Note that
the representation of a group is not unique, which will be
further illustrated in § 4.3.2.

2.3 Equivariance and Invariance

Let X andY be the input and output vector spaces, respec-
tively. The function ϕ : X → Y is called equivariant with
respect to G if when we apply any transformation to the input,
the output also changes via the same transformation or under
a certain predictable behavior. In form, we have:

Definition 2 (Equivariance). The function ϕ : X }→ Y is G-
equivariant if it commutes with any transformation in G,

ϕ(g · x) = g · ϕ(x), ∀g ∈ G, (1)

which, by implementing the group operation · with group represen-
tation, can be rewritten as:

ϕ(ρX (g)x) = ρY (g)ϕ(x), ∀g ∈ G, (2)

where ρX and ρY are the group representations in the input and
output space, respectively.

The choice of group representation facilitates the special-
ization of different scenarios. When both ρX and ρY are trivial
representations, namely, ρX (g) = ρY (g) = I2, ϕ becomes
a trivial function; when ρY (g) = I, ϕ is called an invariant
function, demonstrating that invariance is just a special case of
equivariance.

It is able to verify that equivariance induces the following
desirable properties. (i) Linearity: any linear combination of
equivariant functions is still equivariant. (ii) Composability:
the composition of two equivariant functions (if they can be
composed) yields an equivariant function. Therefore, equivari-
ance for each layer of a network implies that a whole network
is equivariant. (iii) Inheritability: if a function is equivariant
with respect to group G1 and group G2, then this function
must beequivariant with respect to the direct product of these
two groups, i.e. G1 × G2 under a corresponding definition of
product group operation or group representation. This implies
that proving equivariance of each transformation individually
is sufficient to prove equivariance of joint transformations.

In the following context, the variable x is instantiated as
a geometric graph, the group transformation ρ(g) becomes
the transformation of geometric graphs, and the function ϕ is
designed as an invariant/equivariant GNN.

3 DATA STRUCTURE: FROM GRAPH TO GEOMETRIC

GRAPH

This section formally defines graph and geometric graph, and
depicts how they differ from each other. Table 1summarizes
the notations we used throughout this paper.

2. Note that the identity transformation I could have different dimen-
sions in the input space X and output space Y.

TABLE 1

Basic notations and definitions throughout this survey.

Notation Description

Data Structure

G := (A , H)
A graph G containing N nodes, with adjacency matrix
A ∈ RN× N and node feature matrix H ∈ RN×Ch .

⃗
G := (A , H ,

 ⃗
X)

A geometric graph
⃗
G containing N nodes, with adjacency

matrix A and node feature matrix H as above, and

additionally a 3D coordinate matrix
 ⃗
X ∈ RN×3 .

N i The neighborhood of node i.

hi ∈ RCh The scalar feature of node i.

⃗
x i ∈ R3

The 3D coordinate of node i.

⃗
V

i ∈ R3× C The multi-channel 3D vector of node i.
⃗
V

i
(l)

∈ R (2 l+1)×Cl The type-l irreducible vector of node i.

⃗
V

i
(L) := {

⃗
V

i(l)}l∈L The set consisting of irreducible vectors of all types l ∈ L.

e i j ∈ RCe The edge feature from node j to i.

Operator

G, g The group G and its group element g.

ρX (g)
The group representation ρX (g) of the transformation g in
the vector space X.

× , ⊗ The operators between two vectors including cross
product × and Kronecker product ⊗

⊗cg , ⊗
W
cg , ⊗

W
cg Clebsch-Gordan (CG) tensor product, optionally with a

learnable parameter W and a learnable parameter set W.

Y (l) (
⃗
x) ∈ R2l+1

The type-l vector constructed by spherical harmonics of
⃗
x ∈ S2: Y(l) (

⃗
x) = [Y−

(l
l
) , Y−

(l
l
)
+1 , · · ·

)
1 , Yl(l)].

Y (L) (
⃗
x) := {Y (l) (

⃗
x)} l∈L A set consisting of spherical harmonics of all types l ∈ L.

D(l) (g) The l-th degree Wigner-D matrix of the rotation
transformation g ∈ SO(3).

Neural Network

ϕ, ψ, φ, σ Functions implemented with MLP.

3.1 Graph

Conventional studies on graphs usually focus on their rela-
tional topology. Examples include social networks, citation net-

works, etc. In the domain of AI-Driven Drug Design (AIDD),
they are usually referred to as 2D graphs [275].

Definition 3 (Graph). A graph is defined as G := (A, H) where
A ∈ [0, 1]N ×N istheadjacency matrix with N being the number
of nodes, and H ∈ RN×Ch is the node feature matrix with Ch
being the dimension of the feature.

Along with the definition of graph, we also describe some
vital concepts derived. We denote the set of nodes as V and the
set of edges as E. Correspondingly, the neighborhood of node
i, marked as Ni, is specified to be Ni := {j : (vi , vj) ∈ E}. The
graph can additionally contain some edge features eij ∈ RCe

for edge (vi , vj).

Transformations on graphs: g · G. One can
arbitrarily change the order of nodes without changing the
topology of the graph. With the language of group
representation, the permutation transformation of a graph
is denoted as g · G := (PgAPg

T , Pg H), where Pg is the
permutation matrix of the transformation g ∈ S N3 . We
denote the equivalence in terms of permutation as G ≃ g ·
G.

As a concrete example, molecules can be viewed as
graphs, where the nodes vi are instantiated as the atoms, and
the node features H are the one-hot encoding of the atomic
numbers, a row for each atom. The edges A are either
the existence of chemical bonds or constructed based on
relative distance between atoms under a cut-off threshold,
and the respective

3. The permutation of A can also be written in the form of
group representation by first vectorizing A as Vec(A) and then
conducting (Pg ⊗ Pg)Vec(A). Here ⊗ defines the Kronecker
product, and Pg ⊗ Pg is the 2-order representation of the permutation
matrix.

4

P

3

4

1

 2

5

(a) Permutation

M

R

(d) Reflection

Fig. 3. Examples of transformations on geometric graphs.

edge features eij can be assigned as the type of the chemical
bond and/or the relative distance.

3.2 Geometric Graph

In many applications, the graphs we tackle contain not only
the topological connections and node features, but also certain
geometric information. Again, in the example of a molecule, we
may additionally be informed of some geometric quantities
in the Euclidean space, e.g., the positions of the atoms in
3D coordinates4 . Such quantities are of particular interest in
that they encapsulate rich directional information that depicts
the geometry of the system. With the geometric information,
one can go beyond working on limited perception of the
graph topology, but instead to a broader picture of the entire
configuration of the system in 3D space, where important
information, such as the relative orientation of the neighboring
nodes and directional quantities like velocities, could be better
exploited. Hence, in this section, we begin with the definition
of geometric graphs, which are usually referred to as 3D
graphs [24].

Definition 4 (Geometric Graph). Ageometric graph
⃗
G is defined

as
⃗
G := (A, H ,

 ⃗
X), where A ∈ [0, 1]N ×N istheadjacency

matrix, H ∈ RN×Ch is the node feature matrix with dimension

Ch, and
 ⃗
X ∈ RN×3 are the 3D coordinates of all nodes.

The i-th rows of H and
 ⃗
X , namely, hi ∈ RCh and xi ∈ R3

denote the feature and coordinate of nodevi, respectively. In

the above definition, we distinguish the coordinate matrix
 ⃗
X

from other quantities A and H, and geometric graph
⃗
G from

graph G, with an over-right arrow “→ ”, indicating that they

contain geometric and directional information. Note that there

could be other geometric variables besides
 ⃗
X in a

geometric graph, such as velocity, force, and so on. Then

the shape of
 ⃗
X is extended from N × 3 to N × 3 × C

where C denotes the number of channels. In this section, we
assume C = 1 for conciseness, while more complete
examples are shown in §5.

4. Although we mainly focus on 3D space, most of our analyses can be
extended tod-dimensional space where d is an arbitrary integer.

(b) Translation

(c) Rotation

人

人

→t
4

5

3

2

1

人

O

5

Fig. 4. The taxonomy of geometric GNNs introduced in Section 4.

Transformations on geometric graphs: g ·
⃗
G . In contrast

to graphs,transformations on geometric graphs are not
limited to node permutation. We summarize the
transformations of interest below:

• Permutation, which

(PgAPg
⊤ , Pg H , Pg

 ⃗
X

),

matrix representation of

is defined as g ·
⃗
G
:=

where Pg is the permutation
g ∈ Sn;

• Orthogonal transformation (rotation and reflection),

which is defined as g ·
⃗
G := (A , H ,

 ⃗
X Og), where

Og

is the orthogonal matrix representation of g ∈ O(3);

• Translation, which is defined as g ·
⃗
G := (A, H ,

 ⃗
X +

⃗
t g), where

⃗
t g is the translation vector of g ∈ T(3);

We always have the equivalence
⃗
G ≃ g ·

⃗
G . We

can

combine orthogonal transformation and translation into Eu-

clidean transformation on geometric graphs, namely, g ·
⃗
G :=

(A, H ,
 ⃗
X Og +

⃗
t g) for g ∈ E(3). Here, the Euclidean

group

E(3) is a semidirect product [254] of orthogonal transforma-
tion and translation, denoted as E(3) = T(3) ⋉ O(3). We
can similarly define SE(3) transformation by considering
only rotation and translation. We sometimes call H invariant
features (or scalars), since they are independent to E(3)

transformation, and call
 ⃗
X equivariant features (or vectors)

that correlate toE(3) transformations. Figure 3 demonstrates
the example of transformation on geometric graph.

Geometric graphs are powerful and general tools
to model a variety of objects in scientific tasks, including
small molecules [221, 216], proteins [10, 110], crystals
[175, 118], physical point clouds [102, 91], and many
others. We will provide more details in § 5.

4 MODEL: GEOMETRIC GNNS

In this section, we first recap the general form of
Message Passing Neural Network (MPNN) on topological
graphs. Then we introduce different types of geometric
GNNs that are able to process geometric graphs:
invariant GNNs, equivariant GNNs, as well as geometric
graph transformers. Finally, we briefly present the works
that discuss the expressivity of geometric GNNs. Fig.
4presents the taxonomy of geometric GNNs in this
section.

SchNet [221], DimeNet [135], DimeNet++ [76,307], GemNet [136], LieConv [64]

SphereNet [167], ComENet [258], QMP [292]

EGNN [216], GMN [102], PaiNN [219], Local Frames [47,
137,138]

Radial Field [139], GVP-GNN [124], EGHN [92], LEFT-
Net [48], Frame-Averaging [198]

TFN [242], SEGNN [23]

Cormorant [5], NequIP [15], SCN [310], eSCN [192],
MACE [13], Allegro [188]

Graphormer [288,228], TorchMD-Net [241], SE(3)-Transformer [67], LieTransformer [106]

GVP-Transformer [96], Equiformer [152], EquiformerV2 [153], Geoformer [263], EPT [120]

High-Degree Steerable
Models (§4.3.2)

Scalarization-Based
Models (§4.3.1)

Geometric Graph
Transformers (§4.4)

Equivariant GNNs (§4.3)

Invariant GNNs (§4.2)

Geometric GNNs

4.1 Message Passing Neural Networks

Graph Neural Networks (GNNs) are favorable to operate
on graphs with the help of the message-passing mechanism,
which facilitates the information propagation along the graph
structure by updating node embeddings through neighbor-
hood aggregation. To be specific, message-passing GNNs
implement ϕ(G) on topological graphs G by iterating the
following message-passing process in each layer [80],

m i j = ϕmsg (h i , h j , e i j) , (3)

h
′

i = ϕ upd (hi, {mij } j∈ Ni) , (4)

where ϕmsg (·) and ϕupd (·) are the message computation and
feature update function, respectively. The node features hi, hj

and edge feature eij is first synthesized by the message
function to obtain the message mij . The messages within
the neighborhood are then aggregated with one set function

and leveraged to update the node features h
′

i combined with

the input hi.

GNNs defined by Eqs. (3) and (4) are always permutation
equivariant but not inherently E(3)-equivariant. When men-
tioningequivariance or invariance in what follows, this paper
mainly discusses the latter unless otherwise specified.

4.2 Invariant Graph Neural Networks

Moving forward to the geometric domain, there are various
tasks that require the model we propose to be invariant with
regard to Euclidean transformations. For instance, for the task
of molecular property prediction, the predicted energy should
remain unchanged regardless of any rotation/translation of
all atom coordinates. Embedding such inductive bias is crucial
as it essentially conforms to the physical rule of our 3D world.

In form, invariant GNNs update invariant features as H′ =

ϕ(
⃗
G) with the function ϕ satisfying:

ϕ(g ·
⃗
G) = ϕ(

⃗
G), ∀g ∈ E(3). (5)

To design such function, invariant GNNs usually transform

equivariant coordinates
 ⃗
X to invariant scalars that are unaf-

fected by Euclidean transformations. Early invariant GNNs
can date back to DTNN [222], MPNN [80] and MV-GNN [176],
where relative distances are applied for edge construction.

6

TABLE 2

Illustrations of representative models for invariant GNNs, scalarization-based GNNs and high-degree steerable GNNs.

Invariant GNNs
(e.g. SchNet [221])

Scalarization-Based Models

(e.g. EGNN [216])

High-Degree Steerable Models

(e.g. TFN [242])

Message Computation

m i j = σ2 (r i j)σ1 (h j)
m i j = σ 1 (h i , h j , ∥

⃗
x i −

⃗
x j∥2 ,

e i j
)

m⃗ i j = (

⃗
x i −

⃗
x j)σ2 (m i j)

Feature Update

h
′i
 = σ3

(
h i , Σ j∈N i m i j

) ⃗
V ′i(L) =

⃗
V

i
(L) + σ

(⃗
V

i
(L) , Σ j∈N(i)

⃗
M

i
(Lj)

)

Recent works further elaborate the use of various invariant nodes. Basically, it replaces the message embeddings from
scalars ranging from relative distances to angles or dihedral Eq. (7) in DimeNet [135] with the following form:

h
.

)
e
n

-
[2
it

.
2
i

)

]
a

.

.

i
r
o

en
e

e
r

i = σmsg

particular, it re-implementsEq. (3) as (8)

mij = σ2 (rij)σ1 (hj) , (6)

where the message is calculated as the multiplication between
the continues convolution filter and the neighbor embedding,
and the functions σ are all Multi-Layer Perceptrons (MLPs).

DimeNet [135]. By observing that using relative distances
alone is unable to encode directional information, DimeNet
proposes directional message passing which takes as input not
only relative distances but also angles between adjacent edges.
The main component to compute the message embedding of
each directional edge (from j to i) is given by:

where eR
(jiB)

F denotes the radial basis function representation of

relative distancedji; e
kji
CBF5 computes the joint representation

of relative distance dkj and angle α (kj,ji) between edge
(vk , vj) and (vj , vi), with the help of spherical Bessel functions
and spherical harmonics. In [135], Eq. (7) is applied as an
interaction block before an embedding block that derives the

message mji based on eR
(jiB)

F and hidden features hi and

hj . The updated messages m
′

ji of all neighbor nodes are

then utilized to update hidden feature hi. A faster version of
DimeNet is proposed later, dubbed DimeNet++ [76,307].

GemNet [136]. To achieve universal expressivity, GemNet
further takes dihedral angles into account, formulating two-
hop directional message passing based on quadruplets of

5. Here CBF is short for Circular Bessel Function.

angles between edges, upon the message passing mechanism

where, eR
(l
k
B)

F and eC
(i
k
BlF) are defined as above; eS

(
jik
BFl)6

are

calculated by, the spherical Bessel function of relative
distance dji, and spherical harmonics of angle αji,ik and
dihedral angle αji,kl. The input of Eq. (8) additionally
integrates hidden features hi and hj for more
expressivity in its original formulation. Note that
GemNet can be modified to enable equivariant output
by multiplying the output with the associated direction,
which belongs to scalarization based equivariant GNNs
introduced in the next subsection.

LieConv [64]. LieConv is formulated as follows.

mij = σ (log(u
−

i 1 uj))hj , (9)

where ui ∈ G is a lift of
⃗
x i, the logarithm log maps each group

member onto the Lie Algebra g that is a vector space, and σ
is a parametric MLP. Besides, Eq. (10) conducts
normalization by the division of the number of all nodes,i.e.
N(i) + 1. It is clear that LieConv only specifies the update
of node features

hi while keeping the geometric vectors
⃗
x i unchanged. That

means LieConv is invariant.

In addition to the above models, SphereNet [167] is
another prevailing invariant GNN. Similar to GemNet,
SphereNet also exploits relative distances, angles, and
torsion angles for geometric modeling, which is able to
distinguish almost all 3D graph structures. Moreover, its
proposed spherical message passing (SMP) enables fast and
accurate 3D molecular learning on large-scale molecules.
ComENet [258] is another type of invariant model which
incorporates 3D information

6. Here SBF is short for Spherical Bessel Function.

以上内容仅为本文档的试下载部分，为

可阅读页数的一半内容。如要下载或阅

读全文，请访问：

https://d.book118.com/745332132034

011241

https://d.book118.com/745332132034011241
https://d.book118.com/745332132034011241

