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A Survey of Geometric Graph Neural Networks: 
Data Structures, Models and Applications
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Abstract—Geometric graph is a special kind of graph with geometric features, which is vital to model many scientific problems. Unlike

generic graphs, geometric graphs often exhibit physical symmetries of translations, rotations, and reflections, making them ineffectively

processed by current Graph Neural Networks (GNNs). To tackle this issue, researchers proposed a variety of Geometric Graph Neural

Networks equipped with invariant/equivariant properties to better characterize the geometry and topology of geometric graphs. Given the 
current progress in this field, it is imperative to conduct a comprehensive survey of data structures, models, and applications related to

geometric GNNs. In this paper, based on the necessary but concise mathematical preliminaries, we provide a unified view of existing models 
from the geometric message passing perspective. Additionally, we summarize the applications as well as the related datasets to facilitate   
later research for methodology development and experimental evaluation. We also discuss the challenges and future potential directions of 
Geometric GNNs at the end of this survey.

Index Terms—Scientific Systems, Geometric Graphs, Graph Neural Networks, Equivariance, Invariance

  ◆                                        

1    INTRODUCTION

biochemistry require to process data in the form of 
geometric graphs [24]. Distinct from typical graph data, geo- 
metric graphs additionally assign each node a special type of 
node feature in the form of geometric vectors. For example, 
a molecule/protein can be regarded as a geometric graph, 
where the 3D position coordinates of atoms are the geometric 
vectors; in a general multi-body physical system, the 3D states 
(positions, velocities or spins) are the geometric vectors of 
the particles. Notably, geometric graphs exhibit symmetries 
of translations, rotations and/or reflections. This is because 
the physical law controlling the dynamics of the atoms (or 
particles) is the same no matter how we translate or rotate the 
physical system from one place to another. When tackling this 
type of data,it is essential to incorporate the inductive bias of 
symmetry into the design of the model, which motivates the 
study of geometric Graph Neural Networks (GNNs).

Constructing GNNs that permit such symmetry constraints 
has long been challenging to methodological design. Pio- 
neer approaches such as DTNN [222], DimeNet [135] and 
GemNet  [136],  transform the input geometric graph into 
distance/angle/dihedral-based scalars that are invariant to 
rotations or translations, constituting the family of invariant 
GNNs. Noticing the limit on the expressivity of invariant
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Fig. 1. Performance comparisons between geometric GNNs and traditional  
methods on molecular property prediction, protein-ligand docking, and an- tibody 
design. Notably, the methods based on geometric GNNs, including  EGNN [216], 
DiffDock [41], and dyMEAN [142], remarkably outperform  traditional MPNN 
[80], Gnina [179], and RossetaAb [1], on the datasets of  QM9 [203], PDBBind 
[168], and SAbDab [50], respectively, verifying the  effectiveness and efficiency 
of geometric GNNs over various tasks.

GNNs, EGNN [216] and PaiNN [219] additionally involve 
geometric vectors in message passing and node update to 
preserve the directional information in each layer, leading to  
equivariant  GNNs.  With  group  representation  theory as  a 
helpful  tool,  TFN  [242],  SE(3)-Transformer  [67]  and SEGNN 
[23] generalizes invariant scalars and equivariant vectors by 
viewing them as steerable vectors parameterized by high-order 
spherical tensors, giving rise to high-degree steerable GNNs. 
Built upon these fundamental approaches, geometric GNNs have 
made remarkable success in various applications of diverse 
systems, including physical dynamics simulation [67,216], 
molecular property prediction [15,152], protein structure prediction 
[9], protein generation [267,110], and RNA structure ranking 
[245] .  Figure 1 illustrates the superior performance of geometric 
GNNs against traditional methods on the representative tasks.

To facilitate the research of geometric GNNs, this work 
presents a systematic survey focusing both on the methods and
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Models

Geometric
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x i       h′i

Fig. 2. Illustration of the complete input-output pipeline from data structures, models to applications. Note that most figures here for illustrating different  
applications are edited based on previous papers [91, 214, 133, 103, 86, 41, 125, 155, 141, 223, 30, 246, 144]. The term “instance” indicates a  
self-interacted system composed of multiple particles/atoms, such as a molecule or a protein. Pocket-Based Molecule Sampling, Ligand-Binding Affinity  
Prediction, and Protein-Ligand Docking are denoted with yellow shading to imply that all these tasks take as the multi-instance format “Molecule+Protein”.

applications1, which is structured as the following sections: 
In §2, we introduce necessary preliminaries on group theory 
and the formal definition of equivariance/invariance; In §3, 
we propose geometric graph as a universal data structure 
that will be leveraged throughout the entire survey as a 
bridge between real-world data and the models,i.e., geometric 
GNNs; In §4, we summarize existing models into invariant 
GNNs (§4.2) and equivariant GNNs (§4.3), while the latter is 
further categorized into scalarization-based models (§ 4.3.1) 
and high-degree steerable models (§4.3.2); Besides, we also 
introduce geometric graph transformers in § 4.4; In § 5, we 
provide a comprehensive collection of the applications that 
have witnessed the success of geometric GNNs on particle-

1. This work is an extended survey of our previous short version [93].
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based physical systems, molecules, proteins, complexes, and 
other domains like crystals and RNAs.

The goal of this survey is to provide a general overview 
throughout data structure, model design, and applications, 
which  constitutes  an  entire  input-output pipeline  that  is 
instructive  for  machine  learning  practitioners  to  employ 
geometric GNNs on various scientific tasks. Recently, sev- 
eral related surveys have been proposed, which place main 
focus on methodology of geometric GNNs [52], pretrained 
GNNs for chemical data [276], representation learning for 
molecules  [89, 7], and general application of artificial in- 
telligence  in  diverse  types  of  scientific  systems  [299].  In 
contrast to all of them, this survey places an emphasis on 
geometric graph neural networks, not only encapsulating
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theoretical foundations of geometric GNNs but also delivering 
an exhaustive summary of the related applications in domains 
across physics, biochemistry, and material science. Meanwhile, 
we discuss future prospects and interesting research directions 
in §6. We also release the Github repository that collects the 
reference, datasets, codes, benchmarks, and other resources 
related to geometric GNNs.

2   THE BASIC NOTION OF SYMMETRY

In this section, we will compactly introduce the basic notions 
related to symmetry. Readers can skip this section and get 
straight to the methodology part in § 3 if they are familiar 
with the theoretical background.

2.1   Transformation and Group

By defining symmetry, we indicate that an object of interest 
keeps invariant under a set of transformations. For instance, 
the distance between any two points in space remains constant, 
regardless of how we simultaneously rotate or translate these 
two points. Mathematically, a set of transformations forms a 
group (more details are referred to [58]).

Definition 1 (Group).  A group G is a set of transformations 
with a binary operation “·” satisfying these properties: (i) it is 
closed, namely, ∀a,b ∈ G,a · b ∈ G; (ii) it is associative, namely,

∀a,b,c ∈ G,(a · b) · c = a · (b · c); (iii) there exists an identity 
element e ∈ Gsuch that ∀a ∈ G,a · e = e · a = a; (iv) each element

must have an inverse, namely, ∀a ∈ G, ∃b ∈ G,a · b = b · a = e, 
where the inverse b is denoted as a −1  .

We below provide some examples commonly used in the 
applications of this paper:

• E(d) is an Euclidean group consisting of rotations, reflec- 
tions and translations, acting on d-dimension vectors.

•  T(d)  is a subgroup of Euclidean group that consists of 
translations.

• O(d) is an orthogonal group that consists of rotations and 
reflections, acting on d-dimension vectors.

•  SO(d) is a special orthogonal group that only consists of 
rotations.

• SE(d) is a special Euclidean group that consists of only 
rotations and translations.

• Lie Group is a group whose elements form a differentiable 
manifold. Actually, all the groups above are specific exam- 
ples of Lie Group.

• SN is a permutation group whose elements are permutations 
of a given set consisting of N elements.

2.2   Group Representation

While the group operation “·” is defined abstractly above, 
it can be realized as matrix multiplication, with the help 
of group representation. A representation of G is a group 

homomorphism ρ(g) : G }→ GL(V) that takes as input 
the  group element g ∈ G and acts on the general linear 
group of some vector space V, satisfying ρ(g)ρ(h) = ρ(g ·h), 
∀g, h ∈ G. When V =  Rd,  then GL(V )  contains all 
invertible d × d  matrices and ρ(g) assigns a matrix to the 
element g.

For the orthogonal group O(d), one of its common 
group representations is defined by orthogonal matrices O 
∈ Rd×d subject to O ⊤ O = I ;  for SO(d),  the group 
representation is





restricted to orthogonal matrices of determinant 1, denoted 
as R. The case of translation group T(d) is a bit tedious and 
can be derived in the projective space using homogeneous 
coordinates; here, for simplicity, we directly define translation 
as vector addition other than matrix multiplication. Note that 
the representation of a group is not unique, which will be 
further illustrated in § 4.3.2.

2.3   Equivariance and Invariance

Let X andY be the input and output vector spaces, respec- 
tively. The function ϕ : X → Y is called equivariant with 
respect to G if when we apply any transformation to the input, 
the output also changes via the same transformation or under 
a certain predictable behavior. In form, we have:

Definition 2 (Equivariance).  The function ϕ  : X }→ Y is G- 
equivariant if it commutes with any transformation in G,

ϕ(g · x) = g · ϕ(x), ∀g ∈ G,                           (1)

which, by implementing the group operation · with group represen- 
tation, can be rewritten as:

ϕ(ρX (g)x) = ρY (g)ϕ(x), ∀g ∈ G,                     (2)

where ρX and ρY are the group representations in the input and 
output space, respectively.

The choice of group representation facilitates the special- 
ization of different scenarios. When both ρX and ρY are trivial 
representations, namely, ρX (g)  = ρY (g)  =  I2, ϕ becomes 
a trivial function; when ρY (g) = I, ϕ is called an invariant 
function, demonstrating that invariance is just a special case of 
equivariance.

It is able to verify that equivariance induces the following 
desirable properties. (i) Linearity: any linear combination of 
equivariant functions is still equivariant. (ii) Composability: 
the composition of two equivariant functions (if they can be 
composed) yields an equivariant function. Therefore, equivari- 
ance for each layer of a network implies that a whole network 
is equivariant. (iii) Inheritability: if a function is equivariant 
with respect to group G1  and group G2, then this function 
must beequivariant with respect to the direct product of these 
two groups, i.e. G1  × G2  under a corresponding definition of 
product group operation or group representation. This implies 
that proving equivariance of each transformation individually 
is sufficient to prove equivariance of joint transformations.

In the following context, the variable x is instantiated as 
a geometric graph, the group transformation ρ(g) becomes 
the transformation of geometric graphs, and the function ϕ is 
designed as an invariant/equivariant GNN.

3    DATA STRUCTURE: FROM GRAPH TO GEOMETRIC

GRAPH

This section formally defines graph and geometric graph, and 
depicts how they differ from each other. Table 1summarizes 
the notations we used throughout this paper.

2. Note that the identity transformation I could have different dimen- 
sions in the input space X and output space Y.



TABLE 1

Basic notations and definitions throughout this survey.

Notation Description

Data Structure

G := (A ,  H)
A graph G containing N nodes, with adjacency matrix 
A ∈ RN× N  and node feature matrix H ∈ RN×Ch .

⃗
G  := (A ,  H ,  

 ⃗
X )

A geometric graph 
⃗
G  containing N nodes, with adjacency

matrix A and node feature matrix H as above, and 

additionally a 3D coordinate matrix 
 ⃗
X  ∈ RN×3 .

N i The neighborhood of node i.

hi  ∈ RCh The scalar feature of node i.

⃗
x i   ∈ R3

The 3D coordinate of node i.

⃗
V

i  ∈ R3× C The multi-channel 3D vector of node i.
⃗
V

i
( l )   

∈ R (2 l+1 )×Cl The type-l irreducible vector of node i.

⃗
V

i
(L)  := {

⃗
V

i(l)}l∈L The set consisting of irreducible vectors of all types l  ∈ L.

e i j  ∈ RCe The edge feature from node j to i.

Operator

G, g The group G and its group element g.

ρX (g)
The group representation ρX (g) of the transformation g in 
the vector space X.

× , ⊗ The operators between two vectors including cross 
product × and Kronecker product ⊗

⊗cg , ⊗
W
cg  , ⊗

W
cg Clebsch-Gordan (CG) tensor product, optionally with a

learnable parameter W and a learnable parameter set W.

Y ( l )  (
⃗
x ) ∈ R2l+1

The type-l vector constructed by spherical harmonics of
⃗
x  ∈ S2: Y(l) (

⃗
x ) = [Y−

(l
l
) , Y−

(l
l
)
+1 , · · · 

)
1 , Yl(l)].

Y (L )  (
⃗
x ) := {Y ( l )  (

⃗
x )} l∈L A set consisting of spherical harmonics of all types l  ∈ L.

D(l) (g) The l-th degree Wigner-D matrix of the rotation 
transformation g  ∈ SO(3).

Neural Network

ϕ, ψ, φ, σ Functions implemented with MLP.

3.1   Graph

Conventional studies on graphs usually focus on their rela- 
tional topology. Examples include social networks, citation net-

works, etc. In the domain of AI-Driven Drug Design (AIDD), 
they are usually referred to as 2D graphs [275].

Definition 3 (Graph).  A graph is defined as G  := (A, H) where 
A ∈ [0, 1]N ×N  istheadjacency matrix with N being the number 
of nodes, and H  ∈  RN×Ch    is the node feature matrix with Ch 
being the dimension of the feature.

Along with the definition of graph, we also describe some 
vital concepts derived. We denote the set of nodes as V and the 
set of edges as E. Correspondingly, the neighborhood of node 
i, marked as Ni, is specified to be Ni  := {j  : (vi , vj ) ∈ E}. The 
graph can additionally contain some edge features eij  ∈  RCe  

for edge (vi , vj ).

Transformations  on graphs: g  · G. One can 
arbitrarily change the order of nodes without changing the 
topology of the graph. With the language of group 
representation, the permutation transformation of a graph 
is denoted as g · G  := (PgAPg

T , Pg H), where Pg  is the 
permutation matrix of the transformation g ∈ S N3 . We 
denote the equivalence in terms of permutation as G  ≃ g · 
G.

As a concrete example, molecules can be viewed as 
graphs, where the nodes vi  are instantiated as the atoms, and 
the node features H are the one-hot encoding of the atomic 
numbers, a row for each atom. The edges A are either 
the existence of chemical bonds or constructed based on 
relative distance between atoms under a cut-off threshold, 
and the respective

3. The permutation of A can also be written in the form of 
group representation by first vectorizing A as Vec(A) and then 
conducting (Pg  ⊗ Pg)Vec(A). Here ⊗ defines the Kronecker 
product, and Pg  ⊗ Pg  is the 2-order representation of the permutation 
matrix.
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Fig. 3. Examples of transformations on geometric graphs.

edge features eij  can be assigned as the type of the chemical 
bond and/or the relative distance.

3.2   Geometric Graph

In many applications, the graphs we tackle contain not only 
the topological connections and node features, but also certain 
geometric information. Again, in the example of a molecule, we 
may additionally be informed of some geometric quantities 
in the Euclidean space, e.g., the positions of the atoms in 
3D coordinates4 . Such quantities are of particular interest in 
that they encapsulate rich directional information that depicts 
the geometry of the system. With the geometric information, 
one can go beyond working on limited perception of the 
graph topology, but instead to a broader picture of the entire 
configuration of the system in 3D space, where important 
information, such as the relative orientation of the neighboring 
nodes and directional quantities like velocities, could be better 
exploited. Hence, in this section, we begin with the definition 
of geometric graphs, which are usually referred to as 3D 
graphs [24].

Definition 4 (Geometric Graph).  Ageometric graph 
⃗
G  is defined 

as 
⃗
G  := (A, H , 

 ⃗
X ), where A ∈ [0, 1]N ×N istheadjacency 

matrix, H ∈ RN×Ch   is the node feature matrix with dimension 

Ch, and 
 ⃗
X   ∈ RN×3 are the 3D coordinates of all nodes.

The i-th rows of H and 
 ⃗
X , namely, hi  ∈ RCh   and xi  ∈ R3

denote the feature and coordinate of nodevi, respectively. In 

the above definition, we distinguish the coordinate matrix 
 ⃗
X   

from other quantities A and H, and geometric graph 
⃗
G  from 

graph G, with an over-right arrow “→ ”, indicating that they 

contain geometric and directional information. Note that there 

could be other geometric variables besides 
 ⃗
X  in a 

geometric graph, such as velocity, force, and so on. Then 

the shape of 
 ⃗
X  is extended from N  ×  3 to N  ×  3 × C 

where C  denotes the number of channels. In this section, we 
assume C  = 1 for conciseness, while more complete 
examples are shown in §5.

4. Although we mainly focus on 3D space, most of our analyses can be 
extended tod-dimensional space where d is an arbitrary integer.

(b) Translation

(c) Rotation
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Fig. 4. The taxonomy of geometric GNNs introduced in Section 4.

Transformations on geometric graphs: g · 
⃗
G . In contrast 

to graphs,transformations on geometric graphs are not 
limited to node permutation. We summarize the 
transformations of interest below:

• Permutation,    which

(PgAPg
⊤ , Pg H , Pg 

 ⃗
X

),

matrix representation of

is    defined    as    g    ·   
⃗
G        
:=

where  Pg   is  the  permutation 
g ∈ Sn;

• Orthogonal  transformation  (rotation  and  reflection),

which is defined as g · 
⃗
G   :=  (A ,  H ,  

 ⃗
X Og ), where 

Og

is the orthogonal matrix representation of g  ∈ O(3);

• Translation, which is defined as g · 
⃗
G  := (A, H , 

 ⃗
X  + 

⃗
t g ), where 

⃗
t g  is the translation vector of g  ∈ T(3);

We  always  have  the  equivalence  
⃗
G   ≃   g  ·  

⃗
G .  We  

can

combine orthogonal transformation and translation into Eu-

clidean transformation on geometric graphs, namely, g · 
⃗
G  :=

(A, H , 
 ⃗
X Og  + 

⃗
t g ) for g  ∈  E(3). Here, the Euclidean 

group

E(3) is a semidirect product [254] of orthogonal transforma- 
tion and translation, denoted as E(3)  =  T(3) ⋉ O(3). We 
can similarly define SE(3) transformation by considering 
only rotation and translation. We sometimes call H invariant 
features  (or  scalars),  since  they  are  independent  to  E(3)

transformation, and call 
 ⃗
X  equivariant features (or vectors)

that correlate toE(3) transformations. Figure 3 demonstrates 
the example of transformation on geometric graph.

Geometric  graphs  are  powerful  and  general  tools  
to model a variety of objects in scientific tasks, including 
small molecules [221, 216], proteins  [10, 110],  crystals 
[175, 118], physical point clouds [102, 91], and many 
others. We will provide more details in § 5.

4    MODEL: GEOMETRIC GNNS

In this section, we first recap the general form of 
Message Passing Neural Network (MPNN) on topological 
graphs. Then we introduce different types of geometric 
GNNs that are able to process geometric graphs: 
invariant GNNs, equivariant GNNs, as well as geometric 
graph transformers. Finally, we briefly present the works 
that discuss the expressivity of geometric GNNs. Fig. 
4presents the taxonomy of geometric GNNs in this 
section.

SchNet [221], DimeNet [135], DimeNet++ [76,307], GemNet [136], LieConv [64]

SphereNet [167], ComENet [258], QMP [292]

EGNN [216], GMN [102], PaiNN [219], Local Frames [47, 
137,138]

Radial Field [139], GVP-GNN [124], EGHN [92], LEFT- 
Net [48], Frame-Averaging [198]

TFN [242], SEGNN [23]

Cormorant [5],  NequIP [15], SCN [310], eSCN [192], 
MACE [13], Allegro [188]

Graphormer [288,228], TorchMD-Net [241], SE(3)-Transformer [67], LieTransformer [106]

GVP-Transformer [96], Equiformer [152], EquiformerV2 [153], Geoformer [263], EPT [120]

High-Degree Steerable 
Models (§4.3.2)

Scalarization-Based 
Models (§4.3.1)

Geometric Graph   
Transformers (§4.4)

Equivariant GNNs (§4.3)

Invariant GNNs (§4.2)

Geometric GNNs





4.1   Message Passing Neural Networks

Graph Neural Networks (GNNs) are favorable to operate 
on graphs with the help of the message-passing mechanism, 
which facilitates the information propagation along the graph 
structure by updating node embeddings through neighbor- 
hood aggregation. To be specific, message-passing GNNs 
implement ϕ(G) on topological graphs G  by iterating the 
following message-passing process in each layer [80],

m i j   = ϕmsg (h i , h j , e i j  ) ,                                    (3)

h
′

i =  ϕ upd (hi,  {mij } j∈ Ni )  ,                            (4)

where ϕmsg  (·) and ϕupd  (·) are the message computation and 
feature update function, respectively. The node features hi, hj  

and edge feature eij   is first  synthesized by the message 
function to obtain the message mij . The messages within 
the neighborhood are then aggregated with one set function

and leveraged to update the node features h
′

i combined with

the input hi.

GNNs defined by Eqs. (3) and (4) are always permutation 
equivariant but not inherently E(3)-equivariant. When men- 
tioningequivariance or invariance in what follows, this paper 
mainly discusses the latter unless otherwise specified.

4.2   Invariant Graph Neural Networks

Moving forward to the geometric domain, there are various  
tasks that require the model we propose to be invariant with  
regard to Euclidean transformations. For instance, for the task 
of molecular property prediction, the predicted energy should  
remain unchanged regardless of any rotation/translation of 
all atom coordinates. Embedding such inductive bias is crucial  
as it essentially conforms to the physical rule of our 3D world.

In form, invariant GNNs update invariant features as H′ = 

ϕ(
⃗
G ) with the function ϕ satisfying:

ϕ(g · 
⃗
G ) = ϕ(

⃗
G ), ∀g  ∈ E(3).                             (5)

To design such function, invariant GNNs usually transform

equivariant coordinates 
 ⃗
X  to invariant scalars that are unaf-

fected by Euclidean transformations. Early invariant GNNs  
can date back to DTNN [222], MPNN [80] and MV-GNN [176], 
where relative distances are applied for edge construction.
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TABLE 2

Illustrations of representative models for invariant GNNs, scalarization-based GNNs and high-degree steerable GNNs.

Invariant GNNs  
(e.g. SchNet [221])

Scalarization-Based Models

(e.g. EGNN [216])

High-Degree Steerable Models

(e.g. TFN [242])

Message Computation

m i j   = σ2 (r i j)σ1 (h j)
m i j   = σ  1  (h i ,  h j  ,  ∥

⃗
x i  − 

⃗
x j∥2 ,  

e i j
)

 
m⃗ i j   = (

⃗
x i  − 

⃗
x j)σ2 (m i j)

Feature Update

h
′i
 = σ3  

(
h i ,  Σ j∈N i   m i j

) ⃗
V ′i(L)   = 

⃗
V

i
(L)  + σ  

(⃗
V

i
(L)  ,  Σ j∈N( i )  

⃗
M

i
(Lj )  

)

Recent works further elaborate the use of various invariant     nodes. Basically, it replaces the message embeddings from 
scalars ranging from relative distances to angles or dihedral     Eq. (7) in DimeNet [135] with the following form:

h
.

)
e
n

-
[2
it

.
2
i

)

]
a

.

. 

i
r
o

en
e

e
r

i   = σmsg  

particular, it re-implementsEq. (3) as                                                                                                                                        (8)

mij  = σ2  (rij )σ1  (hj ) ,                                    (6)

where the message is calculated as the multiplication between 
the continues convolution filter and the neighbor embedding, 
and the functions σ are all Multi-Layer Perceptrons (MLPs).

DimeNet [135]. By observing that using relative distances  
alone is unable to encode directional information, DimeNet  
proposes directional message passing which takes as input not  
only relative distances but also angles between adjacent edges. 
The main component to compute the message embedding of 
each directional edge (from j to i) is given by:

where eR
(jiB)

F denotes the radial basis function representation of

relative distancedji; e
kji
CBF5  computes the joint representation

of  relative  distance  dkj   and  angle  α (kj,ji)   between  edge 
(vk , vj ) and (vj , vi ), with the help of spherical Bessel functions 
and spherical harmonics. In [135], Eq. (7) is applied as an 
interaction block before an embedding block that derives the

message mji  based on eR
(jiB)

F  and hidden features hi  and

hj . The updated messages m
′

ji  of all neighbor nodes are

then utilized to update hidden feature hi. A faster version of 
DimeNet is proposed later, dubbed DimeNet++ [76,307].

GemNet [136]. To achieve universal expressivity, GemNet 
further takes dihedral angles into account, formulating two- 
hop directional message passing based on quadruplets of

5. Here CBF is short for Circular Bessel Function.

angles between edges, upon the message passing mechanism





where,  eR
(l
k
B)

F   and  eC
(i
k
BlF)   are  defined  as  above;  eS

(
jik
BFl)6   

are

calculated by, the spherical Bessel function of relative 
distance dji, and spherical harmonics of angle αji,ik  and 
dihedral angle  αji,kl.  The  input  of  Eq.  (8)  additionally  
integrates hidden  features  hi   and  hj    for  more  
expressivity  in  its original formulation. Note that 
GemNet can be modified to enable equivariant output 
by multiplying the output with the associated direction, 
which belongs to scalarization based equivariant GNNs 
introduced in the next subsection.

LieConv [64]. LieConv is formulated as follows.

mij  = σ  ( log(u
−

i 1  uj ) )hj ,                                             (9)

where ui  ∈ G is a lift of 
⃗
x i, the logarithm log maps each group

member onto the Lie Algebra g that is a vector space, and σ 
is a parametric MLP. Besides, Eq. (10) conducts 
normalization by the division of the number of all nodes,i.e. 
N(i) + 1. It is clear that LieConv only specifies the update 
of node features

hi while keeping the geometric vectors 
⃗
x i  unchanged. That

means LieConv is invariant.

In addition to the above models, SphereNet [167] is 
another prevailing invariant GNN. Similar to GemNet, 
SphereNet also exploits relative distances, angles, and 
torsion angles for geometric modeling, which is able to 
distinguish almost all 3D graph structures. Moreover, its 
proposed spherical message passing (SMP) enables fast and 
accurate 3D molecular learning on large-scale molecules. 
ComENet [258] is another type of invariant model which 
incorporates 3D information

6. Here SBF is short for Spherical Bessel Function.

以上内容仅为本文档的试下载部分，为

可阅读页数的一半内容。如要下载或阅

读全文，请访问：

https://d.book118.com/745332132034

011241

https://d.book118.com/745332132034011241
https://d.book118.com/745332132034011241

