Instruction Set
Architecture

Instruction Set Architecture 1

CSE2CSA Lecture 13

Instruction Set Architecture
- Classification
Classifying Instruction Set Architectures

Instruction set architecture (ISA) is that portion of the machine visible
to the programmer or compiler writer. We will mainly focus on:-

e Taxonomy of Instruction Set alternatives and some
qualitative assessment (advantages/disadvantages) of
each approach.

e Analyse some instruction set measurements that are
largely independent of a specific instruction set.

e Instruction Sets not aimed at general (desktop)
computers (brief).

e |Issues of language and compilers and their effect on
instruction set architecture.

e Briefly consider the MIPS and Intel (80x86) instruction
sets (Intel uses RISC internally while supporting 80x86
externally).

Instruction Set Architecture
- Classification

Instruction Set

The instruction set is a set of instructions that a processor understands and
can execute — in effect it defines the processor. The set of instructions (&
instruction set) for each type of processor is “hardwired into” the
processor and may be completely different from one machine/CPU type
to another. Typically, different instruction sets differ in the sizes of
instructions, kind of operations they perform or allow, type of operands
they operate on, and the type of results they provide. Each of these
parameters may have a dramatic affect on the performance of any one
type of machine.

Computer systems are often defined by the type of CPU that is incorporated
into the system. For example programs compiled on an IBM PC (or
compatible) system use the instruction set of an 80x86 CPU. All high level
languages are compiled/interpreted into these instructions before a CPU
can execute the program. {The exception is (Java) byte-code which is
machine language for a virtual machine.}

Each instruction is normally written as a type of assembler language and is
considered, in this course, as a 1 to 1 representation of the machine code
that the CPU understands. (<~ one line of assembler code = one
instruction = one machine instruction). We will use a general “brief”
instruction format when considering instruction sets in this course. (See
Later).

Classification by Opcode

e Each instruction consists of an opcode (saying what sort of instruction it
is) followed by 1, 2 or 3 operands which are the data input & output
values of the instruction.

e Instruction sets can be classified by the number and types of opcodes or
by how inputs and outputs are specified in the operands.

e Classifications by opcode are:
— Arithmetic operations eg Addab c
— Data transfer instructions eg Load a or Store a
— Decision making instructions eg IfNonZero a
— Jump instructions eg Jump a

Instruction Set Architecture
- Classification

The type of intended storage in the CPU is the most basic
differentiation — the major choices are :-

e Stack

e Accumulator
e Register (set)
Typically, a set of axes for alternative design choices in instruction

sets is given below.

Operand storage in the CPU

Where are operands kept other than in memory?

Number of explicit operands
named per instruction

How many operands are named explicitly in a typical
instruction?

Operand location

Can any ALU instruction operand be located in memory or must
some or all of the operands be internal storage in the CPU? If
an operand is located in memory, how is the memory location
specified?

Operations

What operations are provided in the instruction set?

Type and size of operands

What is the type and size of each operand and how is it
specified?

Instruction Set Architecture
- Classification

In various architectures operands may be named explicitly or
implicitly. For example operands in a stack architecture are implicitly
on top of the stack, while in an accumulator architecture one operand
Is implicitly the accumulator, while general-purpose-register
architectures (GPR) only have explicit operands. The following table
summarizes these differences.

Temporary Examples Explicit Destination Procedure for
storage operands per for results accessing explicit
provided ALU operands

Stack B5500 HP3000/70 0 (all implicit) Stack Push and Pop onto
or from stack
Accumulator | PDP-8, Motorola 1 (and 2™ is Accumulator Load/store of
6809 implicit) Accumulator

Register set

IBM 360, DEC VAX

2 or 3 (all explicit)

Register or
memory

Load/store of
register or memory
access

Instruction Set Architecture
- Classification

There are two main classes of register set machines: -

e Access memory as part of any instruction — called register-
memory architecture,

e Access memory only with load and store instructions — called load-
store or register-register architecture.

There is a third class called a memory-memory architecture
where all operands are directly accessed from memory (no direct
usage of registers) however these are not generally used in general
purpose machines today. The reason for this is that registers are
faster then memory, easier for a compiler to use and, more
importantly, registers can be used to hold often accessed variables,
which, when allocated to registers can significantly reduce memory
traffic, allowing the program to run faster. This is due to:-

Registers are faster than memory accesses, and

Code density increases (Registers can be named with fewer bits
than a memory location)

Instruction Set Architecture
- Classification

To demonstrate the differences between each type of instruction set,
consider the following code sequence:-

int A, B, C; /* 3 typical variables declared as int’s. */

C =A+ B; /* Add A to B and store the result in C*/

For the following 4 instruction set types we assume that A, B and C all belong
in memory and the original values of A and B are to be maintained:-

Accumulator Register -memory Register-register
(®Load-Store)

Push A Load A Load R1, A Load R1, A

Push B Add B Add R3,R1,B Load R2, B
Add Store C Store R3,C Add R3, R1, R2

Pop C Store R3, C

Note that we are using general description instruction mnemonics here
(push, store, pop ... not a specific instructions such as what is found on
an Intel or similar chipset)

R1, R2, etc. are the specific General Purpose registers in the CPU,
A, B & C represent general memory addresses.

Instruction Set Architecture
- Classification

Note that we will use the following general terminology when
considering instruction sets and their various formats:-

e Instruction (also called op field or opcode) <~ e.g. Load ...,
Add..., Mult..., Store..., etc. represents the actual instruction,
while the “...” represents operands associated with each
instruction which vary according to the architecture class and
operand set formats of the machine.

e Operand < the sources of the data being operated on, e.g.
- Load R1, A; < Has two operands (R1 and A); where R1 refers
to a specific register (<R1) and A refers to an address in
memory.

- Add R3, R2, R1, & Has 3 operands (R3, R2, R1) and refer to
3 different registers.

- Store R3, C, & Has 2 operands (R3, C); one is a register (R3),
while the other is a memory address (C).

Instruction Set Architecture
- Classification

e The accompanying diagram outlines the operand locations for the 4
possible Instruction set classes with the arrow head indicating the
destination and the base of the arrow staff indicating the source:-

(a) Stack (b) Accumulator (c) Register-memory (d) Register — register (Load-store)

¥ ¥

+— @ Registers/stack
! 1 1
\ ﬁ \j - "

Memory

Instruction Set Architecture

- Classification

The primary advantages/disadvantages of stack, accumulator and
register are:-

Machine type

Advantage

Disadvantage

Stack

Simple mode of expression
evaluation (reverse polish).
Short instructions can yield
good code density.

A stack cannot be randomly accessed. This
limitation makes it difficult generate efficient
code. It's also difficult to implement efficiently
as the stack becomes a bottle neck.

Accumulator

Minimizes internal state of
machine. Short instructions.

Since accumulator is only temporary storage,
memory traffic is higher for this approach.

Register

Most general mode for code
generation

All operands must be named, leading to
longer instructions.

However the register classification (above) can be further divided into
2 main classifications:-

1. Register-memory, and

2. Register-register (Load-store)

Additionally, we have a further categorization called General Purpose
Register Machines (GPR) that has evolved with time and are largely
represented by the popular machines today.

Instruction Set Architecture
- Classification

Classifying General-Purpose Register (GPR) Machines
(Operand storage in memory).

There are two major instruction set characteristics which divide GPR
architectures:

1. Whether an ALU instruction has 2 or 3 operands, and

2. How many of the operands in an ALU operation may be
memory addresses.

(these will be defined shortly)

The key advantages of general purpose register machines arise from
effective use of the registers by a compiler in computing
expression values and in using registers to hold variables.

Registers also permit more flexible ordering in evaluating
expressions than stacks or accumulators. e.g.

P ERFCCAASOE KR TS, ATRERREN —LAE. METHRIAREL, 1§
Ji: https://d.book118.com/757162053153006104

https://d.book118.com/757162053153006104

