
1

Instruction Set
Architecture

CSE2CSA Lecture 13

Instruction Set Architecture 1

2

Instruction Set Architecture
- Classification

Classifying Instruction Set Architectures

Instruction set architecture (ISA) is that portion of the machine visible

to the programmer or compiler writer. We will mainly focus on:-

l Taxonomy of Instruction Set alternatives and some

qualitative assessment (advantages/disadvantages) of

each approach.

l Analyse some instruction set measurements that are

largely independent of a specific instruction set.

l Instruction Sets not aimed at general (desktop)

computers (brief).

l Issues of language and compilers and their effect on

instruction set architecture.

l Briefly consider the MIPS and Intel (80x86) instruction

sets (Intel uses RISC internally while supporting 80x86

externally).

3

Instruction Set Architecture
- Classification

Instruction Set

The instruction set is a set of instructions that a processor understands and
can execute – in effect it defines the processor. The set of instructions (
instruction set) for each type of processor is “hardwired into” the
processor and may be completely different from one machine/CPU type
to another. Typically, different instruction sets differ in the sizes of
instructions, kind of operations they perform or allow, type of operands
they operate on, and the type of results they provide. Each of these
parameters may have a dramatic affect on the performance of any one
type of machine.

Computer systems are often defined by the type of CPU that is incorporated
into the system. For example programs compiled on an IBM PC (or
compatible) system use the instruction set of an 80x86 CPU. All high level
languages are compiled/interpreted into these instructions before a CPU
can execute the program. {The exception is (Java) byte-code which is
machine language for a virtual machine.}

Each instruction is normally written as a type of assembler language and is
considered, in this course, as a 1 to 1 representation of the machine code
that the CPU understands. ( one line of assembler code = one
instruction = one machine instruction). We will use a general “brief”
instruction format when considering instruction sets in this course. (See
Later).

4

Classification by Opcode

l Each instruction consists of an opcode (saying what sort of instruction it

is) followed by 1, 2 or 3 operands which are the data input & output

values of the instruction.

l Instruction sets can be classified by the number and types of opcodes or

by how inputs and outputs are specified in the operands.

l Classifications by opcode are:

– Arithmetic operations eg Add a b c

– Data transfer instructions eg Load a or Store a

– Decision making instructions eg IfNonZero a

– Jump instructions eg Jump a

5

Instruction Set Architecture
- Classification

The type of intended storage in the CPU is the most basic

differentiation – the major choices are :-
l Stack

l Accumulator

l Register (set)

Typically, a set of axes for alternative design choices in instruction

sets is given below.

6

Instruction Set Architecture
- Classification

In various architectures operands may be named explicitly or

implicitly. For example operands in a stack architecture are implicitly

on top of the stack, while in an accumulator architecture one operand

is implicitly the accumulator, while general-purpose-register

architectures (GPR) only have explicit operands. The following table

summarizes these differences.

7

Instruction Set Architecture
- Classification

There are two main classes of register set machines: -

l Access memory as part of any instruction – called register-

memory architecture,

l Access memory only with load and store instructions – called load-

store or register-register architecture.

There is a third class called a memory-memory architecture

where all operands are directly accessed from memory (no direct

usage of registers) however these are not generally used in general

purpose machines today. The reason for this is that registers are

faster then memory, easier for a compiler to use and, more

importantly, registers can be used to hold often accessed variables,

which, when allocated to registers can significantly reduce memory

traffic, allowing the program to run faster. This is due to:-

• Registers are faster than memory accesses, and

• Code density increases (Registers can be named with fewer bits

than a memory location)

8

Instruction Set Architecture
- Classification

To demonstrate the differences between each type of instruction set,

consider the following code sequence:-

int A, B, C; /* 3 typical variables declared as int’s. */
C = A + B; /* Add A to B and store the result in C*/

For the following 4 instruction set types we assume that A, B and C all belong

in memory and the original values of A and B are to be maintained:-

Note that we are using general description instruction mnemonics here

(push, store, pop … not a specific instructions such as what is found on
an Intel or similar chipset)

l R1, R2, etc. are the specific General Purpose registers in the CPU,

l A, B & C represent general memory addresses.9

Stack Accumulator Register -memory Register-register

(Load-Store)

Push A Load A Load R1, A Load R1, A

Push B Add B Add R3,R1,B Load R2, B

Add Store C Store R3,C Add R3, R1, R2

Pop C Store R3, C

Instruction Set Architecture
- Classification

Note that we will use the following general terminology when

considering instruction sets and their various formats:-

l Instruction (also called op field or opcode)  e.g. Load …,
Add…, Mult…, Store…, etc. represents the actual instruction,
while the “…” represents operands associated with each
instruction which vary according to the architecture class and
operand set formats of the machine.

l Operand  the sources of the data being operated on, e.g.

– Load R1, A;  Has two operands (R1 and A); where R1 refers
to a specific register (R1) and A refers to an address in
memory.

– Add R3, R2, R1,  Has 3 operands (R3, R2, R1) and refer to
3 different registers.

– Store R3, C,  Has 2 operands (R3, C); one is a register (R3),
while the other is a memory address (C).

10

Instruction Set Architecture
- Classification

l The accompanying diagram outlines the operand locations for the 4

possible Instruction set classes with the arrow head indicating the

destination and the base of the arrow staff indicating the source:-

 (a) Stack (b) Accumulator (c) Register-memory (d) Register – register (Load-store)

11

ALU

Memory

Instruction Set Architecture
- Classification

The primary advantages/disadvantages of stack, accumulator and

register are:-

However the register classification (above) can be further divided into

2 main classifications:-

1. Register-memory, and

2. Register-register (Load-store)

Additionally, we have a further categorization called General Purpose

Register Machines (GPR) that has evolved with time and are largely

represented by the popular machines today.
12

Instruction Set Architecture
- Classification

Classifying General-Purpose Register (GPR) Machines

(Operand storage in memory).

There are two major instruction set characteristics which divide GPR

architectures:

1. Whether an ALU instruction has 2 or 3 operands, and

2. How many of the operands in an ALU operation may be

memory addresses.

(these will be defined shortly)

The key advantages of general purpose register machines arise from

effective use of the registers by a compiler in computing

expression values and in using registers to hold variables.

Registers also permit more flexible ordering in evaluating

expressions than stacks or accumulators. e.g.

13

以上内容仅为本文档的试下载部分，为可阅读页数的一半内容。如要下载或阅读全文，请访
问：https://d.book118.com/757162053153006104

https://d.book118.com/757162053153006104

