
Why we defined a
metalanguage for SQL
Lewis Hemens

We need a scalable solution for managing data
transformation processes that works for data engineers,

analysts and scientists

Why we love SQL

SQL is growing in popularity thanks to modern data warehouses

➔ A common language for data definitions across roles
➔ Modern warehouse SQL engines scale extremely well
➔ Easy to iterate, thanks execution usually being one-click
➔ Relatively easy to debug

But it has some problems...

Why doesn’t SQL scale?

It’s hard to adopt software engineering best practices

➔ Release processes
➔ Version control
➔ Unit tests
➔ Code reuse

Why are these hard, and how can we fix them?

Understanding SQL

SQL is a declarative query language

Declarative programming

When you say what you want

Imperative programming

When you say how to get
what you want

Advantages of being declarative

The fact that SQL is declarative means it has many benefits

➔ SQL queries can be parallelized
➔ SQL queries can be automatically optimized
➔ For most SQL statements there are no side effects
➔ SQL queries are guaranteed to eventually terminate

SQL is not a programming language

SQL is few features short of being a programming language

➔ SQL has little if any control flow
➔ There is no recursion or iteration*
➔ SQL is declarative and static

*Some flavors of SQL (e.g. T-SQL) add these and are turing complete

Example: writing reusable code

select

 floor(age / 5) * 5 as age_group,

 count(1) as user_count

from users

group by age_group

Example: writing reusable code

select

 floor(age / 5) * 5 as age_group,

 count(1) as user_count

from users

group by age_group
We can’t reuse this query:

the input is fixed 😭

Example: writing testable code

select

 floor(age / 5) * 5 as age_group,

 count(1) as user_count

from users

group by age_group
We can’t test this query for

the same reason 😭

Example: writing iterative code

user_tables = ["users", "user_stats", "user_events"]

for table in user_tables:

 delete from table

 where user_id in (

 select user_id from gdpr_deletion_requests

)

Example: writing iterative code

user_tables = ["users", "user_stats", "user_events"]

for table in user_tables:

 delete from table

 where user_id in (

 select user_id from gdpr_deletion_requests

)

No iteration in SQL 😭

Metaprogramming to the
rescue

What is metaprogramming?

Metaprogramming is a programming technique in which computer
programs have the ability to treat other programs as their data

Metaprogramming can be used to move computations from run-time to
compile-time

Metaprogramming example

select

 floor(age / 5) * 5 as

age_group,

 count(1) as user_count

from users

group by age_group

function ageDist(input, bucket = 5) {
 return `
 select
 floor(age / ${bucket}) *
${bucket} as age_group,
 count(1) as user_count
 from ${input}
 group by age_group` ;
}

Fixing SQL with meta programming

➔ Enable code reuse through parameterizable functions
➔ Allow some imperative programming
➔ Introduce some control flow
➔ Keep our code declarative at run-time

Dataform
framework

An open-source framework and
metalanguage for SQL

Dataform framework overview

➔ Makes it easy to write parameterized SQL
➔ Enables code reuse
➔ APIs to help build directed acyclic graphs
➔ Support for writing data assertions
➔ Support for writing SQL unit tests
➔ APIs for documenting datasets
➔ Support for managing multiple environments

以上内容仅为本文档的试下载部分，为可阅读页数的一半内容。如

要下载或阅读全文，请访问：https://d.book118.com/75802406200

6006062

https://d.book118.com/758024062006006062
https://d.book118.com/758024062006006062

