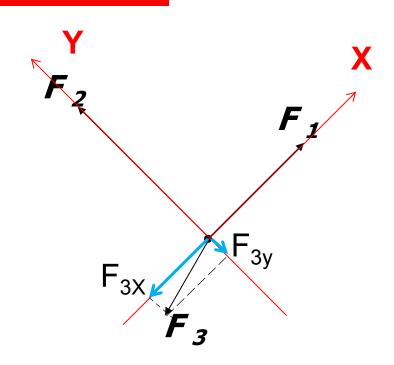

# 正交分解法

# 正交分解法

# 把力按相互垂直的两个方向分解叫正交分解



# 用力的正交分解求多个力的合力




$$F_X = F_{1x} - F_{2x} - F_{3x}$$

$$F_{y} = F_{1y} + F_{2y} - F_{3y}$$

## 多个力合力的大小:

$$F = \sqrt{F_x^2 + F_y^2}$$



$$F_X = F_1 - F_{3x}$$

$$F_Y = F_2 - F_{3y}$$

# 多个力合力的大小:

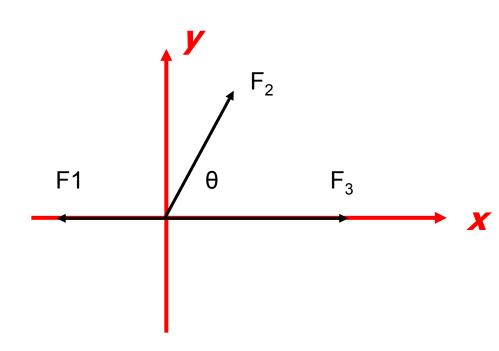
$$F = \sqrt{F_x^2 + F_y^2}$$

# 用力的正交分解求多个力的合力

- 1、建立直角坐标系(使尽量多的力落在坐标轴上)
- 2、正交分解各力(将各力分解到两个坐标轴上)
- 3、分别求出x 轴和y 轴上各力的合力:

$$F_x = F_{1x} + F_{2x} + F_{3x} + \cdots$$

$$F_{y} = F_{1y} + F_{2y} + F_{3y} + \cdots$$


4、求出FX 和 Fy 的合力,即为多个力的合力

大小: 
$$F = \sqrt{F_x^2 + F_y^2}$$
 方向:  $\tan \theta = \frac{F_y}{F_x}$ 

例题1: 如图所示 $F_1$ =5N, $F_2$ =10N, $F_3$ =15N,  $\theta$ =60<sup>0</sup>,用正交分解法求这三个力的合力。

X轴: 
$$F_X = F_3 + F_{2x} - F_1$$

Y轴: F<sub>y</sub>=F<sub>2y</sub>



# Fx和Fy进行合成

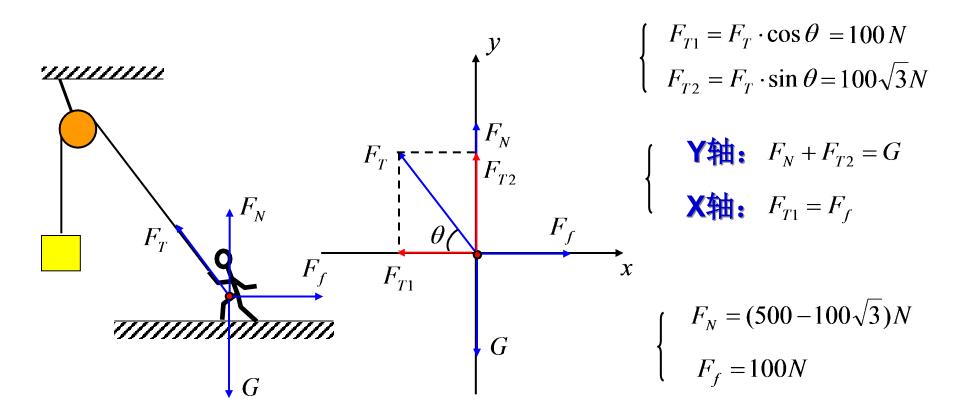
$$F = \sqrt{F_x^2 + F_y^2}$$

# 用力的正交分解求解物体平衡问题

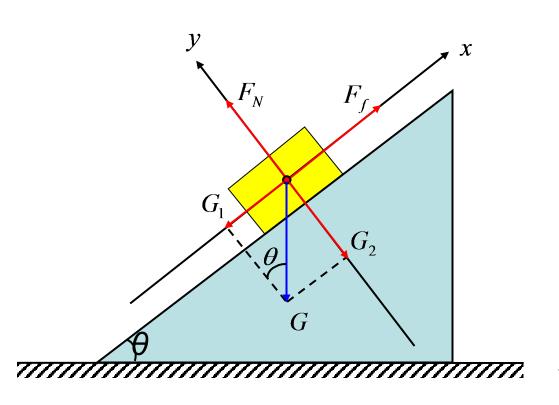
- 1、画出物体的受力图。
- 2、建立直角坐标系。
- 3、正交分解各力。(将各力分解到两个坐标轴上)
- 4、物体平衡时各方向上合力为零,分别写出x 方向和y 方向方程。

$$F_{x} = F_{1x} + F_{2x} + F_{3x} + \dots = 0$$

$$F_{y} = F_{1y} + F_{2y} + F_{3y} + \dots = 0$$


5、物体处于平衡态满足方程为:

$$\begin{cases} F_{y \triangleq} = 0 \\ F_{x \triangleq} = 0 \end{cases}$$


6、根据方程求解。

# 4、正交分解法

(2) 例:如图,重为500N的人通过滑轮的轻绳牵引重200N的物体,当绳与水平成60°角时,物体静止,不计滑轮与绳子的摩擦,求地面对人的支持力和摩擦力。



(3) 例:把一个重为G的物体放在倾角为 θ的斜面上,物体处于静止状态,用力的正交方法,求物体受到的摩擦力和支持力分别为多少?



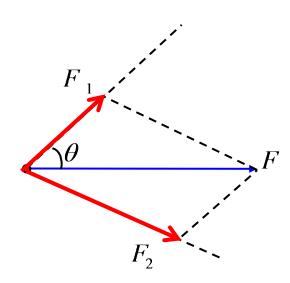
$$F_X = F_f - G_1 = 0$$
  
 $F_y = F_N - G_2 = 0$ 

$$F_f = G \cdot \sin \theta$$

$$F_N = G \cdot \cos \theta$$

# 正交分解法总结

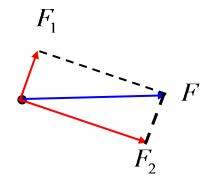
- 1、建立直角坐标系(使更多的力落在坐标轴上)
  - 2、正交分解各力(将各力分解到两个坐标轴上)
  - 3、分别求出x 轴和y 轴上各力的合力:

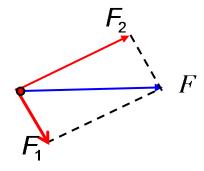

$$F_x = F_{1x} + F_{2x} + F_{3x} + \cdots$$

$$F_{y} = F_{1y} + F_{2y} + F_{3y} + \cdots$$

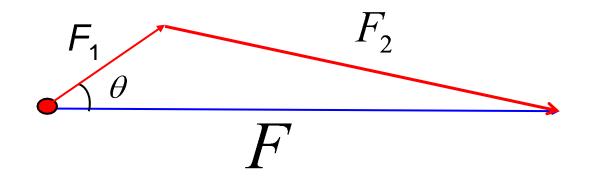
4、根据题目条件求解所需物理量

## 3、力的分解的一些情况汇总


(1) 已知合力和两个分力的方向,只有一种分解方法。




## (2) 已知合力F和两个分力的大小 $F_1$ 、 $F_2$ 时


$$1, |F_1 - F_2| > F$$
 或  $|F_1 + F_2| < F$ ,无解

## 2、有两个解(在同一平面内)





#### (3) 已知合力和一个分力的大小和方向时,只有一种分解方法。



以上内容仅为本文档的试下载部分,为可阅读页数的一半内容。如要下载或阅读全文,请访问: <a href="https://d.book118.com/785340142020011204">https://d.book118.com/785340142020011204</a>